CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Long-term safety and effectiveness of unprotected left main coronary stenting with drug-eluting stents compared with bare-metal stents Outcomes of patients with and without baseline lipid-lowering therapy undergoing revascularization for left main coronary artery disease: analysis from the EXCEL trial Pulmonary vascular lesions occurring in patients with chronic major vessel thromboembolic pulmonary hypertension A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography Impact of large periprocedural myocardial infarction on mortality after percutaneous coronary intervention and coronary artery bypass grafting for left main disease: an analysis from the EXCEL trial Radial versus femoral artery access in patients undergoing PCI for left main coronary artery disease: analysis from the EXCEL trial Pancoronary Plaque Characteristics in STEMI Caused by Culprit Plaque Erosion Versus Rupture: 3-Vessel OCT Study C-reactive protein and prognosis after percutaneous coronary intervention and bypass graft surgery for left main coronary artery disease: Analysis from the EXCEL trial Restricted access Mortality After Repeat Revascularization Following PCI or CABG for Left Main Disease: The EXCEL Trial Rotational Atherectomy in acute STEMI with heavily calcified culprit lesion is a rule breaking solution

Original Research2017 Dec 1;120(11):1920-1925

JOURNAL:Am J Cardiol. Article Link

Comparison of Accuracy of One-Use Methods for Calculating Fractional Flow Reserve by Intravascular Optical Coherence Tomography to That Determined by the Pressure-Wire Method

Jang SJ, Ahn JM, Oh WY et al. Keywords: Calculating Fractional Flow Reserve; Intravascular Optical Coherence Tomography; Pressure-Wire Method

ABSTRACT

Although the identification of the hemodynamic significance of coronary lesions becomes important for revascularization strategy, the potential role of 3-dimensional high-resolution intracoronary optical coherence tomography (OCT) for predicting functional significance of coronary lesions remains unclear. We assessed the diagnostic performance of 2 computational approaches for deriving fractional flow reserve (FFR) from intravascular OCT images. We developed 2 methods to derive FFR-OCT by AFD (FFR-OCTAFD) and FFR-OCT by CFD (FFR-OCTCFD). Among 217 eligible patients between 2011 and 2014, 104 were included for data analysis (9 for derivation, 95 for validation). Luminal geometries from 3-dimensional OCT were used for both FFR-OCTAFD and FFR-OCTCFD calculations. The analytical fluid dynamics method calculated FFR from the blood flow resistance estimated using Poiseuille's law. For computational fluid dynamics, we numerically solved the Navier-Stokes equation in a steady-state flow with the distal porous media model for the capillary vessels. We examined the diagnostic performance of FFR-OCTAFD and FFR-OCTCFD compared with the pressure-wire measured FFR. The accuracy, sensitivity, specificity, PPV, and NPV were 86%, 65%, 94%, 81%, and 88% for FFR-OCTAFD and 86%, 73%, 91%, 76%, and 90% for FFR-OCTCFD. The area under the curve of the receiver-operating characteristic curve was 0.88 for FFR-OCTAFD and 0.86 for FFR-OCTCFD. FFR-OCTAFD and FFR-OCTCFD showed a strong linear correlation with the measured FFR (r = 0.631; p <0.001, r = 0.655; p <0.001, respectively). FFR derived from high-resolution volumetric OCT images showed high diagnostic performance for the detection of coronary ischemia. In conclusion, OCT-derived FFR may be useful for guiding the management of coronary artery disease.


Copyright © 2017 Elsevier Inc. All rights reserved.