CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Astro-CHARM, the First 10-year ASCVD Risk Estimator Incorporating Coronary Calcium Successful Treatment of Unprotected Left Main Coronary Bifurcation Lesion Using Minimum Contrast Volume with Intravascular Ultrasound Guidance Improving the Use of Primary Prevention Implantable Cardioverter-Defibrillators Therapy With Validated Patient-Centric Risk Estimates Mortality Following Cardiovascular and Bleeding Events Occurring Beyond 1 Year After Coronary Stenting - A Secondary Analysis of the Dual Antiplatelet Therapy (DAPT) Study Relationship Between Infarct Size and Outcomes Following Primary PCI: Patient-Level Analysis From 10 Randomized Trials Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study Intravascular ultrasound guidance in drug-eluting stents implantation: a meta-analysis and trial sequential analysis of randomized controlled trials Intracoronary Optical Coherence Tomography 2018: Current Status and Future Directions Intravascular ultrasound-guided percutaneous coronary intervention in left main coronary bifurcation lesions: a review Prognostic impact of baseline glucose levels in acute myocardial infarction complicated by cardiogenic shock-a substudy of the IABP-SHOCK II-trial

Original Research2017 Dec 1;120(11):1920-1925

JOURNAL:Am J Cardiol. Article Link

Comparison of Accuracy of One-Use Methods for Calculating Fractional Flow Reserve by Intravascular Optical Coherence Tomography to That Determined by the Pressure-Wire Method

Jang SJ, Ahn JM, Oh WY et al. Keywords: Calculating Fractional Flow Reserve; Intravascular Optical Coherence Tomography; Pressure-Wire Method

ABSTRACT

Although the identification of the hemodynamic significance of coronary lesions becomes important for revascularization strategy, the potential role of 3-dimensional high-resolution intracoronary optical coherence tomography (OCT) for predicting functional significance of coronary lesions remains unclear. We assessed the diagnostic performance of 2 computational approaches for deriving fractional flow reserve (FFR) from intravascular OCT images. We developed 2 methods to derive FFR-OCT by AFD (FFR-OCTAFD) and FFR-OCT by CFD (FFR-OCTCFD). Among 217 eligible patients between 2011 and 2014, 104 were included for data analysis (9 for derivation, 95 for validation). Luminal geometries from 3-dimensional OCT were used for both FFR-OCTAFD and FFR-OCTCFD calculations. The analytical fluid dynamics method calculated FFR from the blood flow resistance estimated using Poiseuille's law. For computational fluid dynamics, we numerically solved the Navier-Stokes equation in a steady-state flow with the distal porous media model for the capillary vessels. We examined the diagnostic performance of FFR-OCTAFD and FFR-OCTCFD compared with the pressure-wire measured FFR. The accuracy, sensitivity, specificity, PPV, and NPV were 86%, 65%, 94%, 81%, and 88% for FFR-OCTAFD and 86%, 73%, 91%, 76%, and 90% for FFR-OCTCFD. The area under the curve of the receiver-operating characteristic curve was 0.88 for FFR-OCTAFD and 0.86 for FFR-OCTCFD. FFR-OCTAFD and FFR-OCTCFD showed a strong linear correlation with the measured FFR (r = 0.631; p <0.001, r = 0.655; p <0.001, respectively). FFR derived from high-resolution volumetric OCT images showed high diagnostic performance for the detection of coronary ischemia. In conclusion, OCT-derived FFR may be useful for guiding the management of coronary artery disease.


Copyright © 2017 Elsevier Inc. All rights reserved.