CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

The Science Underlying COVID-19: Implications for the Cardiovascular System Impact of Percutaneous Revascularization on Exercise Hemodynamics in Patients With Stable Coronary Disease Association Between Depressive Symptoms and Incident Cardiovascular Diseases Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials Ticagrelor versus clopidogrel in elective percutaneous coronary intervention (ALPHEUS): a randomised, open-label, phase 3b trial Antibody-Based Ticagrelor Reversal Agent in Healthy Volunteers When, where, and how to target vascular inflammation in the post-CANTOS era? Left atrial appendage occlusion in atrial fibrillation patients with previous intracranial bleeding: A national multicenter study Comparison of 1-month Versus 12-month Dual Antiplatelet Therapy after Implantation of Drug-eluting Stents Guided by either Intravascular Ultrasound or Angiography in Patients with Acute Coronary Syndrome: Rationale and Design of Prospective, Multicenter, Randomized, Controlled IVUS-ACS & ULTIMATE-DAPT trial Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS)

Original Research2019 May 7. pii: EIJ-D-18-01082.

JOURNAL:EuroIntervention. Article Link

Pulmonary Artery Denervation Using Catheter based Ultrasonic Energy

Rothman A, Jonas M, Castel D et al. Keywords: pulmonary artery denervation; pulmonary hypertension

ABSTRACT

AIMS -  Pulmonary arterial hypertension is a devastating disease characterized by pulmonary vascular remodelling and right heart failure. Radio-frequency pulmonary artery denervation (PDN) improves pulmonary hemodynamics in pre-clinical and early clinical studies, however denervation depth is limited. High-frequency non-focused ultrasound can deliver energy to the vessel adventitia, sparing the intima and media. We therefore investigated the feasibility, safety and efficacy of ultrasound PDN.

 

METHODS AND RESULTS -  Histological examination demonstrated that innervation of human pulmonary arteries are predominantly sympathetic (71%), with >40% of nerves at a depth of >4mm. Finite element analysis of ultrasound energy distribution and ex-vivo studies demonstrated generation of temperatures >47ºC to a depth of 10mm. In domestic swine PDN reduced mean pulmonary artery pressure induced by thromboxane A2 in comparison to sham. No adverse events were observed to 95-days. Histological examination identified structural and immunohistological alterations of nerves in PDN treated animals, with sparing of the intima and media and reduced tyrosine hydroxylase staining 95-days post-procedure indicating persistent alteration of the structure of sympathetic nerves.

 

CONCLUSIONS -  Ultrasound PDN is safe and effective in the pre-clinical setting, with energy delivery to a depth that will permit targeting sympathetic nerves in humans.