CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Echocardiographic Screening for Pulmonary Hypertension in Congenital Heart Disease Optical Coherence Tomography–Defined Plaque Vulnerability in Relation to Functional Stenosis Severity and Microvascular Dysfunction Prognostic Implication of Functional Incomplete Revascularization and Residual Functional SYNTAX Score in Patients With Coronary Artery Disease Drug-Coated Balloons for Coronary Artery Disease: Third Report of the International DCB Consensus Group Management of pulmonary hypertension from left heart disease in candidates for orthotopic heart transplantation Physiology-Based Revascularization: A New Approach to Plan and Optimize Percutaneous Coronary Intervention: State-of-the-Art Review Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study The Hybrid Approach to Chronic Total Occlusion Percutaneous Coronary Intervention: Update From the PROGRESS CTO Registry Clinical and angiographic outcomes of coronary dissection after paclitaxel-coated balloon angioplasty for small vessel coronary artery disease Multicenter Registry of Real-World Patients With Severely Calcified Coronary Lesions Undergoing Orbital Atherectomy: 1-Year Outcomes

Original Research2019 May 7. pii: EIJ-D-18-01082.

JOURNAL:EuroIntervention. Article Link

Pulmonary Artery Denervation Using Catheter based Ultrasonic Energy

Rothman A, Jonas M, Castel D et al. Keywords: pulmonary artery denervation; pulmonary hypertension

ABSTRACT

AIMS -  Pulmonary arterial hypertension is a devastating disease characterized by pulmonary vascular remodelling and right heart failure. Radio-frequency pulmonary artery denervation (PDN) improves pulmonary hemodynamics in pre-clinical and early clinical studies, however denervation depth is limited. High-frequency non-focused ultrasound can deliver energy to the vessel adventitia, sparing the intima and media. We therefore investigated the feasibility, safety and efficacy of ultrasound PDN.

 

METHODS AND RESULTS -  Histological examination demonstrated that innervation of human pulmonary arteries are predominantly sympathetic (71%), with >40% of nerves at a depth of >4mm. Finite element analysis of ultrasound energy distribution and ex-vivo studies demonstrated generation of temperatures >47ºC to a depth of 10mm. In domestic swine PDN reduced mean pulmonary artery pressure induced by thromboxane A2 in comparison to sham. No adverse events were observed to 95-days. Histological examination identified structural and immunohistological alterations of nerves in PDN treated animals, with sparing of the intima and media and reduced tyrosine hydroxylase staining 95-days post-procedure indicating persistent alteration of the structure of sympathetic nerves.

 

CONCLUSIONS -  Ultrasound PDN is safe and effective in the pre-clinical setting, with energy delivery to a depth that will permit targeting sympathetic nerves in humans.