CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Initial experience with percutaneous mitral valve repair in patients with cardiac amyloidosis Orbital atherectomy for the treatment of small (2.5mm) severely calcified coronary lesions: ORBIT II sub-analysis Italian Society of Interventional Cardiology (GIse) Registry Of Transcatheter Treatment of Mitral Valve RegurgitaTiOn (GIOTTO): Impact of Valve Disease Etiology and Residual Mitral Regurgitation after MitraClip Implantation Pathophysiology, diagnosis and new therapeutic approaches for ischemic mitral regurgitation Risk of Atrial Fibrillation According to Cancer Type: A Nationwide Population-Based Study An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction Incidence and Standardized Definitions of Mitral Valve Leaflet Adverse Events After Transcatheter Mitral Valve Repair: the EXPAND Study Outcomes of TTVI in Patients With Pacemaker or Defibrillator Leads: Data From the TriValve Registry Novel Transcatheter Mitral Valve Prosthesis for Patients With Severe Mitral Annular Calcification Cardio-Oncology Services: rationale, organization, and implementation: A report from the ESC Cardio-Oncology council

Original Research2019 May 7. pii: EIJ-D-18-01082.

JOURNAL:EuroIntervention. Article Link

Pulmonary Artery Denervation Using Catheter based Ultrasonic Energy

Rothman A, Jonas M, Castel D et al. Keywords: pulmonary artery denervation; pulmonary hypertension

ABSTRACT

AIMS -  Pulmonary arterial hypertension is a devastating disease characterized by pulmonary vascular remodelling and right heart failure. Radio-frequency pulmonary artery denervation (PDN) improves pulmonary hemodynamics in pre-clinical and early clinical studies, however denervation depth is limited. High-frequency non-focused ultrasound can deliver energy to the vessel adventitia, sparing the intima and media. We therefore investigated the feasibility, safety and efficacy of ultrasound PDN.

 

METHODS AND RESULTS -  Histological examination demonstrated that innervation of human pulmonary arteries are predominantly sympathetic (71%), with >40% of nerves at a depth of >4mm. Finite element analysis of ultrasound energy distribution and ex-vivo studies demonstrated generation of temperatures >47ºC to a depth of 10mm. In domestic swine PDN reduced mean pulmonary artery pressure induced by thromboxane A2 in comparison to sham. No adverse events were observed to 95-days. Histological examination identified structural and immunohistological alterations of nerves in PDN treated animals, with sparing of the intima and media and reduced tyrosine hydroxylase staining 95-days post-procedure indicating persistent alteration of the structure of sympathetic nerves.

 

CONCLUSIONS -  Ultrasound PDN is safe and effective in the pre-clinical setting, with energy delivery to a depth that will permit targeting sympathetic nerves in humans.