CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

TAVI Represents an Anti-Inflammatory Therapy via Reduction of Shear Stress Induced, Piezo-1-Mediated Monocyte Activation Treatment Effects of Pulmonary Artery Denervation for Pulmonary Arterial Hypertension Stratified by REVEAL Risk Score: Results from PADN-CFDA Trial Hemodynamic, Functional, and Clinical Responses to Pulmonary Artery Denervation in Patients With Pulmonary Arterial Hypertension of Different Causes 3-Year Outcomes After 2-Stent With Provisional Stenting for Complex Bifurcation Lesions Defined by DEFINITION Criteria Clinical Impact of Residual Leaks Following Left Atrial Appendage Occlusion: Insights From the NCDR LAAO Registry Half-Dose Direct Oral Anticoagulation Versus Standard Antithrombotic Therapy After Left Atrial Appendage Occlusion Haemodynamic definitions and updated clinical classification of pulmonary hypertension A Score to Assess Mortality After Percutaneous Mitral Valve Repair Propensity-Matched 1-Year Outcomes Following Transcatheter Aortic Valve Replacement in Low-Risk Bicuspid and Tricuspid Patients Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement

Original Research2019 May 7. pii: EIJ-D-18-01082.

JOURNAL:EuroIntervention. Article Link

Pulmonary Artery Denervation Using Catheter based Ultrasonic Energy

Rothman A, Jonas M, Castel D et al. Keywords: pulmonary artery denervation; pulmonary hypertension

ABSTRACT

AIMS -  Pulmonary arterial hypertension is a devastating disease characterized by pulmonary vascular remodelling and right heart failure. Radio-frequency pulmonary artery denervation (PDN) improves pulmonary hemodynamics in pre-clinical and early clinical studies, however denervation depth is limited. High-frequency non-focused ultrasound can deliver energy to the vessel adventitia, sparing the intima and media. We therefore investigated the feasibility, safety and efficacy of ultrasound PDN.

 

METHODS AND RESULTS -  Histological examination demonstrated that innervation of human pulmonary arteries are predominantly sympathetic (71%), with >40% of nerves at a depth of >4mm. Finite element analysis of ultrasound energy distribution and ex-vivo studies demonstrated generation of temperatures >47ºC to a depth of 10mm. In domestic swine PDN reduced mean pulmonary artery pressure induced by thromboxane A2 in comparison to sham. No adverse events were observed to 95-days. Histological examination identified structural and immunohistological alterations of nerves in PDN treated animals, with sparing of the intima and media and reduced tyrosine hydroxylase staining 95-days post-procedure indicating persistent alteration of the structure of sympathetic nerves.

 

CONCLUSIONS -  Ultrasound PDN is safe and effective in the pre-clinical setting, with energy delivery to a depth that will permit targeting sympathetic nerves in humans.