CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study) Restenosis, Stent Thrombosis, and Bleeding Complications - Navigating Between Scylla and Charybdis Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series Translational Perspective on Epigenetics in Cardiovascular Disease Spontaneous Coronary Artery Dissection: JACC State-of-the-Art Review Impact of Abnormal Coronary Reactivity on Long-Term Clinical Outcomes in Women Improved Outcomes Associated with the use of Shock Protocols: Updates from the National Cardiogenic Shock Initiative New AHA/ACC/HRS Guidance on Sudden Cardiac Death Prevention Patient Characteristics Associated With Antianginal Medication Escalation and De-Escalation Following Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From the OPEN CTO Registry

Original Research2019 May 7. pii: EIJ-D-18-01082.

JOURNAL:EuroIntervention. Article Link

Pulmonary Artery Denervation Using Catheter based Ultrasonic Energy

Rothman A, Jonas M, Castel D et al. Keywords: pulmonary artery denervation; pulmonary hypertension

ABSTRACT

AIMS -  Pulmonary arterial hypertension is a devastating disease characterized by pulmonary vascular remodelling and right heart failure. Radio-frequency pulmonary artery denervation (PDN) improves pulmonary hemodynamics in pre-clinical and early clinical studies, however denervation depth is limited. High-frequency non-focused ultrasound can deliver energy to the vessel adventitia, sparing the intima and media. We therefore investigated the feasibility, safety and efficacy of ultrasound PDN.

 

METHODS AND RESULTS -  Histological examination demonstrated that innervation of human pulmonary arteries are predominantly sympathetic (71%), with >40% of nerves at a depth of >4mm. Finite element analysis of ultrasound energy distribution and ex-vivo studies demonstrated generation of temperatures >47ºC to a depth of 10mm. In domestic swine PDN reduced mean pulmonary artery pressure induced by thromboxane A2 in comparison to sham. No adverse events were observed to 95-days. Histological examination identified structural and immunohistological alterations of nerves in PDN treated animals, with sparing of the intima and media and reduced tyrosine hydroxylase staining 95-days post-procedure indicating persistent alteration of the structure of sympathetic nerves.

 

CONCLUSIONS -  Ultrasound PDN is safe and effective in the pre-clinical setting, with energy delivery to a depth that will permit targeting sympathetic nerves in humans.