CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Lack of Association Between Heart Failure and Incident Cancer Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease: A Meta-Analysis of Randomized Trials The prognostic role of mid-range ejection fraction in ST-segment elevation myocardial infarction Classic crush and DK crush stenting techniques Coronary Artery Plaque Characteristics Associated With Adverse Outcomes in the SCOT-HEART Study The HACD4 haplotype as a risk factor for atherosclerosis in males Changes in One-Year Mortality in Elderly Patients Admitted with Acute Myocardial Infarction in Relation with Early Management LOX-1 in Atherosclerosis and Myocardial Ischemia: Biology, Genetics, and Modulation The association between body mass index and obesity with survival in pulmonary arterial hypertension A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, phase 3 trial

Review ArticleVolume 12, Issue 6, June 2019

JOURNAL:JACC: Cardiovascular Imaging Article Link

The Future of Cardiovascular Computed Tomography Advanced Analytics and Clinical Insights

ED Nicol, BL Norgaard, P Blanke et al. Keywords: atherosclerosis; cardiac CT; FFRCT; machine learning; radiomics; TMVR

ABSTRACT


Cardiovascular computed tomography (CCT) has undergone rapid maturation over the last decade and is now of proven clinical utility in the diagnosis and management of coronary artery disease, in guiding structural heart disease intervention, and in the diagnosis and treatment of congenital heart disease. The next decade will undoubtedly witness further advances in hardware and advanced analytics that will potentially see an increasingly core role for CCT at the center of clinical cardiovascular practice. In coronary artery disease assessment this may be via improved hemodynamic adjudication, and shear stress analysis using computational flow dynamics, more accurate and robust plaque characterization with spectral or photon-counting CT, or advanced quantification of CT data via artificial intelligence, machine learning, and radiomics. In structural heart disease, CCT is already pivotal to procedural planning with adjudication of gradients before and following intervention, whereas in congenital heart disease CCT is already used to support clinical decision making from neonates to adults, often with minimal radiation dose. In both these areas the role of computational flow dynamics, advanced tissue printing, and image modelling has the potential to revolutionize the way these complex conditions are managed, and CCT is likely to become an increasingly critical enabler across the whole advancing field of cardiovascular medicine.