CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Quantitative angiography methods for bifurcation lesions: a consensus statement update from the European Bifurcation Club IVUS Guidance Is Associated With Better Outcome in Patients Undergoing Unprotected Left Main Coronary Artery Stenting Compared With Angiography Guidance Alone Management of Acute Myocardial Infarction During the COVID-19 Pandemic From Nonclinical Research to Clinical Trials and Patient-registries: Challenges and Opportunities in Biomedical Research High-Risk Coronary Atherosclerosis: Is It the Plaque Burden, the Calcium, the Lipid, or Something Else? HFpEF: From Mechanisms to Therapies Prognostic Effect and Longitudinal Hemodynamic Assessment of Borderline Pulmonary Hypertension Current Interventions for the Left Main Bifurcation Comparative analysis of recurrent events after presentation with an index myocardial infarction or ischaemic stroke Antithrombotic Therapy in Patients with Atrial Fibrillation and Acute Coronary Syndrome Treated Medically or with Percutaneous Coronary Intervention or Undergoing Elective Percutaneous Coronary Intervention: Insights from the AUGUSTUS Trial

Review ArticleVolume 12, Issue 6, June 2019

JOURNAL:JACC: Cardiovascular Imaging Article Link

The Future of Cardiovascular Computed Tomography Advanced Analytics and Clinical Insights

ED Nicol, BL Norgaard, P Blanke et al. Keywords: atherosclerosis; cardiac CT; FFRCT; machine learning; radiomics; TMVR

ABSTRACT


Cardiovascular computed tomography (CCT) has undergone rapid maturation over the last decade and is now of proven clinical utility in the diagnosis and management of coronary artery disease, in guiding structural heart disease intervention, and in the diagnosis and treatment of congenital heart disease. The next decade will undoubtedly witness further advances in hardware and advanced analytics that will potentially see an increasingly core role for CCT at the center of clinical cardiovascular practice. In coronary artery disease assessment this may be via improved hemodynamic adjudication, and shear stress analysis using computational flow dynamics, more accurate and robust plaque characterization with spectral or photon-counting CT, or advanced quantification of CT data via artificial intelligence, machine learning, and radiomics. In structural heart disease, CCT is already pivotal to procedural planning with adjudication of gradients before and following intervention, whereas in congenital heart disease CCT is already used to support clinical decision making from neonates to adults, often with minimal radiation dose. In both these areas the role of computational flow dynamics, advanced tissue printing, and image modelling has the potential to revolutionize the way these complex conditions are managed, and CCT is likely to become an increasingly critical enabler across the whole advancing field of cardiovascular medicine.