CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Comparative Effectiveness of β-Blocker Use Beyond 3 Years After Myocardial Infarction and Long-Term Outcomes Among Elderly Patients Percutaneous Intervention for Concurrent Chronic Total Occlusions in Patients With STEMI: The EXPLORE Trial Intensive Care Utilization in Stable Patients With ST-Segment Elevation Myocardial Infarction Treated With Rapid Reperfusion 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure A Meta-Analysis of Contemporary Lesion Modification Strategies During Percutaneous Coronary Intervention in 244,795 Patients From 22 Studies Association Between Living in Food Deserts and Cardiovascular Risk Effects of clopidogrel vs. prasugrel vs. ticagrelor on endothelial function, inflammatory parameters, and platelet function in patients with acute coronary syndrome undergoing coronary artery stenting: a randomized, blinded, parallel study Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond Application of High-Sensitivity Troponin in Suspected Myocardial Infarction No causal effects of plasma homocysteine levels on the risk of coronary heart disease or acute myocardial infarction: A Mendelian randomization study

Review ArticleVolume 12, Issue 6, June 2019

JOURNAL:JACC: Cardiovascular Imaging Article Link

The Future of Cardiovascular Computed Tomography Advanced Analytics and Clinical Insights

ED Nicol, BL Norgaard, P Blanke et al. Keywords: atherosclerosis; cardiac CT; FFRCT; machine learning; radiomics; TMVR

ABSTRACT


Cardiovascular computed tomography (CCT) has undergone rapid maturation over the last decade and is now of proven clinical utility in the diagnosis and management of coronary artery disease, in guiding structural heart disease intervention, and in the diagnosis and treatment of congenital heart disease. The next decade will undoubtedly witness further advances in hardware and advanced analytics that will potentially see an increasingly core role for CCT at the center of clinical cardiovascular practice. In coronary artery disease assessment this may be via improved hemodynamic adjudication, and shear stress analysis using computational flow dynamics, more accurate and robust plaque characterization with spectral or photon-counting CT, or advanced quantification of CT data via artificial intelligence, machine learning, and radiomics. In structural heart disease, CCT is already pivotal to procedural planning with adjudication of gradients before and following intervention, whereas in congenital heart disease CCT is already used to support clinical decision making from neonates to adults, often with minimal radiation dose. In both these areas the role of computational flow dynamics, advanced tissue printing, and image modelling has the potential to revolutionize the way these complex conditions are managed, and CCT is likely to become an increasingly critical enabler across the whole advancing field of cardiovascular medicine.