CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Percutaneous Coronary Intervention Readmissions Where Are the Solutions? Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents Reappraisal of Reported Genes for Sudden Arrhythmic Death: An Evidence-Based Evaluation of Gene Validity for Brugada Syndrome Comparison of Stenting Versus Bypass Surgery According to the Completeness of Revascularization in Severe Coronary Artery Disease: Patient-Level Pooled Analysis of the SYNTAX, PRECOMBAT, and BEST Trials Multimodality imaging in cardiology: a statement on behalf of the Task Force on Multimodality Imaging of the European Association of Cardiovascular Imaging High-Sensitivity Troponin I Levels and Coronary Artery Disease Severity, Progression, and Long-Term Outcomes Advances in Clinical Cardiology 2020: A Summary of Key Clinical Trials Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention

Original ResearchVolume 12, Issue 7 Part 2, July 2019

JOURNAL:JACC: Cardiovascular Imaging Article Link

Anatomical and Functional Computed Tomography for Diagnosing Hemodynamically Significant Coronary Artery Disease: A Meta-Analysis

C Celeng, T Leiner, P Maurovich-Horvat et al. Keywords: coronary artery disease; computed tomography; fractional flow reserve; meta-analysis; myocardial perfusion imaging

ABSTRACT


OBJECTIVES - This meta-analysis determined the diagnostic performance of coronary computed tomography (CT) angiography (CTA), CT myocardial perfusion (CTP), fractional flow reserve CT (FFRCT), the transluminal attenuation gradient (TAG), and their combined use with CTA versus FFR as a reference standard for detection of hemodynamically significant coronary artery disease (CAD).

 

BACKGROUND - CTA provides excellent anatomic, albeit limited functional information for the evaluation of CAD. Recently, various functional CT techniques emerged to assess the hemodynamic consequences of CAD.

 

METHODS - This meta-analysis was performed in adherence to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. PubMed, EMBASE, and Web of Science were searched from inception until September 7, 2017. Bayesian random effects analysis was used to compute pooled sensitivity, specificity, and the summary receiver-operating characteristic curve of the index tests and compare them with the FFR as a reference standard. Analyses were performed on vessel and patient levels. Because CTA has excellent sensitivity, specificity was considered most relevant. Individual FFRCT values were collected.

 

RESULTS - Overall, 54 articles and 5,330 patients were included. At vessel level, pooled specificity of CTP (0.86; 95% confidence interval [CI]: 0.76 to 0.93), FFRCT (0.78; 95% CI: 0.72 to 0.83) and TAG (0.77; 95% CI: 0.61 to 0.89) were substantially higher than that of CTA (0.61; 95% CI: 0.54 to 0.68). The addition of FFRCT, CTP, and TAG to CTA resulted in high to excellent specificities (0.80 to 0.92). The summary receiver-operating characteristic curve at vessel level yielded superior diagnostic accuracy for CTP, FFRCT, and combined CTA and CTP, compared with CTA. A subanalysis of on-site versus off-site FFRCT revealed no substantial differences between the sensitivity (0.84 vs. 0.85) and specificity (0.80 vs. 0.73) of the 2 techniques. In a second subanalysis, dynamic CTP showed higher sensitivity (0.85 vs. 0.72), but had a lower specificity (0.81 vs. 0.90) than static CTP.

 

CONCLUSIONS - CTP and FFRCT demonstrated a substantial improvement in the identification of hemodynamically significant CAD compared with CTA; therefore, their integration to clinical workflow before revascularization is recommended.