CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Randomized Evaluation of TriGuard 3 Cerebral Embolic Protection After Transcatheter Aortic Valve Replacement: REFLECT II Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement Extracellular Myocardial Volume in Patients With Aortic Stenosis Impact of Pre-Existing and New-Onset Atrial Fibrillation on Outcomes After Transcatheter Aortic Valve Replacement Long-term health outcome and mortality evaluation after invasive coronary treatment using drug eluting stents with or without the IVUS guidance. Randomized control trial. HOME DES IVUS Impact of Intravascular Ultrasound on Long-Term Clinical Outcomes in Patients With Acute Myocardial Infarction Thrombotic Versus Bleeding Risk After Transcatheter Aortic Valve Replacement: JACC Review Topic of the Week Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Replacement Intravascular ultrasound-guided percutaneous coronary intervention improves the clinical outcome in patients undergoing multiple overlapping drug-eluting stents implantation Contemporary Use and Trends in Unprotected Left Main Coronary Artery Percutaneous Coronary Intervention in the United States: An Analysis of the National Cardiovascular Data Registry Research to Practice Initiative

Original ResearchAugust 2019

JOURNAL:J Am Coll Cardiol. Article Link

Minimizing Permanent Pacemaker Following Repositionable Self-Expanding Transcatheter Aortic Valve Replacement

H Jilaihawi, ZG Zhao, R Du et al. Keywords: pacemaker; PPM; TAVR; transcatheter aortic valve replacement

ABSTRACT


OBJECTIVES - This study sought to minimize the risk of permanent pacemaker implantation (PPMI) with contemporary repositionable self-expanding transcatheter aortic valve replacement (TAVR).

 

BACKGROUND- Self-expanding TAVR traditionally carries a high risk of PPMI. Limited data exist on the use of the repositionable devices to minimize this risk.

 

METHODS- At NYU Langone Health, 248 consecutive patients with severe aortic stenosis underwent TAVR under conscious sedation with repositionable self-expanding TAVR with a standard approach to device implantation. A detailed analysis of multiple factors contributing to PPMI was performed; this was used to generate an anatomically guided MInimizing Depth According to the membranous Septum (MIDAS) approach to device implantation, aiming for pre-release depth in relation to the noncoronary cusp of less than the length of the membranous septum (MS).

 

RESULTS- Right bundle branch block, MS length, largest device size (Evolut 34 XL; Medtronic, Minneapolis, Minnesota), and implant depth > MS length predicted PPMI. On multivariate analysis, only implant depth > MS length (odds ratio: 8.04 [95% confidence interval: 2.58 to 25.04]; p < 0.001) and Evolut 34 XL (odds ratio: 4.96 [95% confidence interval: 1.68 to 14.63]; p = 0.004) were independent predictors of PPMI. The MIDAS approach was applied prospectively to a consecutive series of 100 patients, with operators aiming to position the device at a depth of < MS length whenever possible; this reduced the new PPMI rate from 9.7% (24 of 248) in the standard cohort to 3.0% (p = 0.035), and the rate of new left bundle branch block from 25.8% to 9% (p < 0.001).

 

CONCLUSIONS- Using a patient-specific MIDAS approach to device implantation, repositionable self-expanding TAVR achieved very low and predictable rates of PPMI which are significantly lower than previously reported with self-expanding TAVR.