CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

High-Resolution Cardiac Magnetic Resonance Imaging Techniques for the Identification of Coronary Microvascular Dysfunction Fractional Flow Reserve-Guided Multivessel Angioplasty in Myocardial Infarction Independent Association of Lipoprotein(a) and Coronary Artery Calcification With Atherosclerotic Cardiovascular Risk A prediction model of simple echocardiographic variables to screen for potentially correctable shunts in adult patients with pulmonary arterial hypertension associated with atrial septal defects: a cross-sectional study Bench testing and coronary artery bifurcations: a consensus document from the European Bifurcation Club Sildenafil added to pirfenidone in patients with advanced idiopathic pulmonary fibrosis and risk of pulmonary hypertension: A Phase IIb, randomised, double-blind, placebo-controlled study - Rationale and study design Comprehensive Management of Cardiovascular Risk Factors for Adults With Type 2 Diabetes: A Scientific Statement From the American Heart Association Autologous CD34+ Stem Cell Therapy Increases Coronary Flow Reserve and Reduces Angina in Patients With Coronary Microvascular Dysfunction Plaque Rupture, compared to Plaque Erosion, is associated with Higher Level of Pan-coronary Inflammation Cardiovascular risk prediction in type 2 diabetes: a comparison of 22 risk scores in primary care settings

Original ResearchAugust 2019

JOURNAL:J Am Coll Cardiol. Article Link

Minimizing Permanent Pacemaker Following Repositionable Self-Expanding Transcatheter Aortic Valve Replacement

H Jilaihawi, ZG Zhao, R Du et al. Keywords: pacemaker; PPM; TAVR; transcatheter aortic valve replacement

ABSTRACT


OBJECTIVES - This study sought to minimize the risk of permanent pacemaker implantation (PPMI) with contemporary repositionable self-expanding transcatheter aortic valve replacement (TAVR).

 

BACKGROUND- Self-expanding TAVR traditionally carries a high risk of PPMI. Limited data exist on the use of the repositionable devices to minimize this risk.

 

METHODS- At NYU Langone Health, 248 consecutive patients with severe aortic stenosis underwent TAVR under conscious sedation with repositionable self-expanding TAVR with a standard approach to device implantation. A detailed analysis of multiple factors contributing to PPMI was performed; this was used to generate an anatomically guided MInimizing Depth According to the membranous Septum (MIDAS) approach to device implantation, aiming for pre-release depth in relation to the noncoronary cusp of less than the length of the membranous septum (MS).

 

RESULTS- Right bundle branch block, MS length, largest device size (Evolut 34 XL; Medtronic, Minneapolis, Minnesota), and implant depth > MS length predicted PPMI. On multivariate analysis, only implant depth > MS length (odds ratio: 8.04 [95% confidence interval: 2.58 to 25.04]; p < 0.001) and Evolut 34 XL (odds ratio: 4.96 [95% confidence interval: 1.68 to 14.63]; p = 0.004) were independent predictors of PPMI. The MIDAS approach was applied prospectively to a consecutive series of 100 patients, with operators aiming to position the device at a depth of < MS length whenever possible; this reduced the new PPMI rate from 9.7% (24 of 248) in the standard cohort to 3.0% (p = 0.035), and the rate of new left bundle branch block from 25.8% to 9% (p < 0.001).

 

CONCLUSIONS- Using a patient-specific MIDAS approach to device implantation, repositionable self-expanding TAVR achieved very low and predictable rates of PPMI which are significantly lower than previously reported with self-expanding TAVR.