CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Healed coronary plaque rupture as a cause of rapid lesion progression: a case demonstrated with in vivo histopathology by directional coronary atherectomy Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis Trends in Usage and Clinical Outcomes of Coronary Atherectomy: A Report From the National Cardiovascular Data Registry CathPCI Registry A Notch3-Marked Subpopulation of Vascular Smooth Muscle Cells Is the Cell of Origin for Occlusive Pulmonary Vascular Lesions. Initial Worldwide Experience With the WATCHMAN Left Atrial Appendage System for Stroke Prevention in Atrial Fibrillation Survival After Coronary Revascularization With Paclitaxel-Coated Balloons 3-Year Clinical Follow-Up of the RIBS IV Clinical Trial A Prospective Randomized Study of Drug-Eluting Balloons Versus Everolimus-Eluting Stents in Patients With In-Stent Restenosis in Coronary Arteries Previously Treated With Drug-Eluting Stents State of the art: evolving concepts in the treatment of heavily calcified and undilatable coronary stenoses - from debulking to plaque modification, a 40-year-long journey One-Year Outcomes of Orbital Atherectomy of Long, Diffusely Calcified Coronary Artery Lesions Two-year outcomes after treatment of severely calcified coronary lesions with the orbital atherectomy system and the impact of stent types: Insight from the ORBIT II trial

Original ResearchAugust 2019

JOURNAL:J Am Coll Cardiol. Article Link

Minimizing Permanent Pacemaker Following Repositionable Self-Expanding Transcatheter Aortic Valve Replacement

H Jilaihawi, ZG Zhao, R Du et al. Keywords: pacemaker; PPM; TAVR; transcatheter aortic valve replacement

ABSTRACT


OBJECTIVES - This study sought to minimize the risk of permanent pacemaker implantation (PPMI) with contemporary repositionable self-expanding transcatheter aortic valve replacement (TAVR).

 

BACKGROUND- Self-expanding TAVR traditionally carries a high risk of PPMI. Limited data exist on the use of the repositionable devices to minimize this risk.

 

METHODS- At NYU Langone Health, 248 consecutive patients with severe aortic stenosis underwent TAVR under conscious sedation with repositionable self-expanding TAVR with a standard approach to device implantation. A detailed analysis of multiple factors contributing to PPMI was performed; this was used to generate an anatomically guided MInimizing Depth According to the membranous Septum (MIDAS) approach to device implantation, aiming for pre-release depth in relation to the noncoronary cusp of less than the length of the membranous septum (MS).

 

RESULTS- Right bundle branch block, MS length, largest device size (Evolut 34 XL; Medtronic, Minneapolis, Minnesota), and implant depth > MS length predicted PPMI. On multivariate analysis, only implant depth > MS length (odds ratio: 8.04 [95% confidence interval: 2.58 to 25.04]; p < 0.001) and Evolut 34 XL (odds ratio: 4.96 [95% confidence interval: 1.68 to 14.63]; p = 0.004) were independent predictors of PPMI. The MIDAS approach was applied prospectively to a consecutive series of 100 patients, with operators aiming to position the device at a depth of < MS length whenever possible; this reduced the new PPMI rate from 9.7% (24 of 248) in the standard cohort to 3.0% (p = 0.035), and the rate of new left bundle branch block from 25.8% to 9% (p < 0.001).

 

CONCLUSIONS- Using a patient-specific MIDAS approach to device implantation, repositionable self-expanding TAVR achieved very low and predictable rates of PPMI which are significantly lower than previously reported with self-expanding TAVR.