CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Radial Versus Femoral Access for Rotational Atherectomy: A UK Observational Study of 8622 Patients Non-cardiac surgery in patients with coronary artery disease: risk evaluation and periprocedural management Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study Effect of Side Branch Predilation in Coronary Bifurcation Stenting With the Provisional Approach - Results From the COBIS (Coronary Bifurcation Stenting) II Registry Management of No-Reflow Phenomenon in the Catheterization Laboratory Select Drug-Drug Interactions With Direct Oral Anticoagulants The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability Quantitative Assessment of Coronary Microvascular Function: Dynamic Single-Photon Emission Computed Tomography, Positron Emission Tomography, Ultrasound, Computed Tomography, and Magnetic Resonance Imaging Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials JACC Scientific Expert Panel Influence of LDL-Cholesterol Lowering on Cardiovascular Outcomes in Patients With Diabetes Mellitus Undergoing Coronary Revascularization

Original ResearchAugust 2019

JOURNAL:J Am Coll Cardiol. Article Link

Minimizing Permanent Pacemaker Following Repositionable Self-Expanding Transcatheter Aortic Valve Replacement

H Jilaihawi, ZG Zhao, R Du et al. Keywords: pacemaker; PPM; TAVR; transcatheter aortic valve replacement

ABSTRACT


OBJECTIVES - This study sought to minimize the risk of permanent pacemaker implantation (PPMI) with contemporary repositionable self-expanding transcatheter aortic valve replacement (TAVR).

 

BACKGROUND- Self-expanding TAVR traditionally carries a high risk of PPMI. Limited data exist on the use of the repositionable devices to minimize this risk.

 

METHODS- At NYU Langone Health, 248 consecutive patients with severe aortic stenosis underwent TAVR under conscious sedation with repositionable self-expanding TAVR with a standard approach to device implantation. A detailed analysis of multiple factors contributing to PPMI was performed; this was used to generate an anatomically guided MInimizing Depth According to the membranous Septum (MIDAS) approach to device implantation, aiming for pre-release depth in relation to the noncoronary cusp of less than the length of the membranous septum (MS).

 

RESULTS- Right bundle branch block, MS length, largest device size (Evolut 34 XL; Medtronic, Minneapolis, Minnesota), and implant depth > MS length predicted PPMI. On multivariate analysis, only implant depth > MS length (odds ratio: 8.04 [95% confidence interval: 2.58 to 25.04]; p < 0.001) and Evolut 34 XL (odds ratio: 4.96 [95% confidence interval: 1.68 to 14.63]; p = 0.004) were independent predictors of PPMI. The MIDAS approach was applied prospectively to a consecutive series of 100 patients, with operators aiming to position the device at a depth of < MS length whenever possible; this reduced the new PPMI rate from 9.7% (24 of 248) in the standard cohort to 3.0% (p = 0.035), and the rate of new left bundle branch block from 25.8% to 9% (p < 0.001).

 

CONCLUSIONS- Using a patient-specific MIDAS approach to device implantation, repositionable self-expanding TAVR achieved very low and predictable rates of PPMI which are significantly lower than previously reported with self-expanding TAVR.