CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Risk Stratification for Patients in Cardiogenic Shock After Acute Myocardial Infarction Cardiac Implantable Electronic Devices in Patients With Left Ventricular Assist Systems Non-eligibility for reperfusion therapy in patients presenting with ST-segment elevation myocardial infarction: Contemporary insights from the National Cardiovascular Data Registry (NCDR) Left Main Revascularization in 2017 Coronary Artery Bypass Grafting or Percutaneous Coronary Intervention? Can We Use the Intrinsic Left Ventricular Delay (QLV) to Optimize the Pacing Configuration for Cardiac Resynchronization Therapy With a Quadripolar Left Ventricular Lead? The Wait for High-Sensitivity Troponin Is Over—Proceed Cautiously Impact of the US Food and Drug Administration–Approved Sex-Specific Cutoff Values for High-Sensitivity Cardiac Troponin T to Diagnose Myocardial Infarction Comparison of double kissing crush versus Culotte stenting for unprotected distal left main bifurcation lesions: results from a multicenter, randomized, prospective DKCRUSH-III study Usefulness of the SYNTAX score II to validate 2-year outcomes in patients with complex coronary artery disease undergoing percutaneous coronary intervention: A large single-center study In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography

Clinical TrialSeptember 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Implantation

B Faurie, G Souteyrand, the EASY TAVI investigators. Keywords: left-ventricular stimulation; left-ventricular pacing; transcatheter aortic valve implantation; transcatheter aortic valve replacement

ABSTRACT


BACKGROUND - Rapid ventricular pacing is necessary to ensure cardiac standstill during transcatheter aortic valve implantation (TAVI).

 

OBJECTIVES - We investigated whether left ventricular (LV)-stimulation via a guidewire reduced procedure duration while maintaining efficacy and safety compared with standard right ventricular (RV)-stimulation.

 

 

METHODS - This is a prospective, multicenter, single-blinded, superiority, randomized controlled trial. Patients undergoing transfemoral TAVI with a Sapien valve (Edwards Lifesciences) were allocated to LV- or RV-stimulation. The primary endpoint was procedure duration. Secondary endpoints included efficacy, safety, and cost at 30 days. This trial is registered at clinicaltrials.gov (NCT02781896).

 

RESULTS - Between May 2017 and May 2018, 307 patients were randomised but 4 were excluded because they did not receive the intended treatment: 303 patients were analysed in the LV- (n=151) or RV-stimulation (n=152) groups. Mean procedure duration was significantly shorter in the LV-stimulation group (48.4±16.9 vs. 55.6±26.9 min, p=0.0013), with a difference of -0.12 (95% CI -0.20 to -0.05) in the log transformed procedure duration (p=0.0012). Effective stimulation was similar in the LV- and RV-stimulation groups: 124 (84.9%) vs. 128 (87.1%), p=0.60. Safety of stimulation was also similar in the LV- and RV-stimulation groups: procedural success occurred in 151 (100%) vs. 151 (99.3%) patients (p=0.99); 30-day MACE-TAVI occurred in 21 (13.9%) vs. 26 (17.1%) patients (p=0.44); fluoroscopy time was lower in the LV-stimulation group (13.48±5.98 vs. 14.60±5.59, p=0.02) as was cost (18,807±1,318 vs. 19,437±2,318, p=0.001).

 

CONCLUSIONS -  Compared with RV-stimulation, LV-stimulation during TAVI was associated with significantly reduced procedure duration, fluoroscopy time, and cost, with similar efficacy and safety.