CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Diagnostic performance of stress perfusion cardiac magnetic resonance for the detection of coronary artery disease: A systematic review and meta-analysis Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of CHK1 via Activating mTORC1/P70S6K Pathway Triage Considerations for Patients Referred for Structural Heart Disease Intervention During the Coronavirus Disease 2019 (COVID-19) Pandemic: An ACC /SCAI Consensus Statement Pulmonary Artery Pressure-Guided Management of Patients With Heart Failure and Reduced Ejection Fraction Association of Coronary Anatomical Complexity With Clinical Outcomes After Percutaneous or Surgical Revascularization in the Veterans Affairs Clinical Assessment Reporting and Tracking Program Effect of Medication Co-payment Vouchers on P2Y12 Inhibitor Use and Major Adverse Cardiovascular Events Among Patients With Myocardial Infarction: The ARTEMIS Randomized Clinical Trial Prevalence of Coronary Vasospasm Using Coronary Reactivity Testing in Patients With Spontaneous Coronary Artery Dissection The year in cardiovascular medicine 2020: acute coronary syndromes and intensive cardiac care Evaluation and Management of Nonculprit Lesions in STEMI Coronary CT Angiography in Patients With Non-ST-Segment Elevation Acute Coronary Syndrome

Original ResearchVolume 12, Issue 24, December 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Association Between Diastolic Dysfunction and Health Status Outcomes in Patients Undergoing Transcatheter Aortic Valve Replacement

AO Malik, M Omer, MC Pflederer et al. Keywords: health status; left ventricular diastolic dysfunction; TAVR

ABSTRACT

OBJECTIVES - The aim of this study was to assess the association of baseline left ventricular diastolic dysfunction (LVDD) with health status outcomes of patients undergoing transcatheter aortic valve replacement (TAVR).

 

BACKGROUND - Although LVDD in patients with aortic stenosis is associated with higher mortality after TAVR, it is unknown if it is also associated with health status recovery.

 

METHODS - In a cohort of 304 patients with interpretable echocardiograms, undergoing TAVR, LVDD was categorized at baseline as absent (grade 0), mild (grade 1), moderate (grade 2), or severe (grade 3). Disease-specific health status was assessed using the 12-item Kansas City Cardiomyopathy Questionnaire overall summary score (KCCQ-OS) at baseline and at 1-month and 12-month follow-up. Association of baseline LVDD with health status at baseline and follow-up after TAVR was assessed using a linear trend test, and association with health status recovery (change in KCCQ-OS) was examined using a linear mixed model adjusting for baseline KCCQ-OS.

 

RESULTS - Twenty-four (7.9%), 54 (17.8%), 186 (61.2%), and 40 (13.2%) patients had LVDD grades of 0, 1, 2, and 3, respectively. Baseline KCCQ-OS was 61.3 ± 22.7, 51.0 ± 26.1, 44.7 ± 25.7, and 44.4 ± 21.9 (p = 0.004) in patients with LVDD grades of 0, 1,2 and 3. At 1 and 12 months after TAVR, LVDD was not associated with KCCQ-OS. Recovery in KCCQ-OS after TAVR was substantial and similar in patients across all severities of LVDD.

 

CONCLUSIONS - Although LVDD is associated with health status prior to TAVR, patients across all severities of LVDD have similar recovery in health status after TAVR.