CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

The Current State of Left Main Percutaneous Coronary Intervention Know Diabetes by Heart: A Partnership to Improve Cardiovascular Outcomes in Type 2 Diabetes Mellitus PCI and CABG for Treating Stable Coronary Artery Disease Impact of different final optimization techniques on long-term clinical outcomes of left main cross-over stenting Comparative Accuracy of Focused Cardiac Ultrasonography and Clinical Examination for Left Ventricular Dysfunction and Valvular Heart Disease: A Systematic Review and Meta-analysis Glucose-lowering Drugs or Strategies, Atherosclerotic Cardiovascular Events, and Heart Failure in People With or at Risk of Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis of Randomised Cardiovascular Outcome Trials Mortality Differences Associated With Treatment Responses in CANTOS and FOURIER: Insights and Implications Chronic Kidney Disease and Coronary Artery Disease Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes

Original ResearchVolume 12, Issue 24, December 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Association Between Diastolic Dysfunction and Health Status Outcomes in Patients Undergoing Transcatheter Aortic Valve Replacement

AO Malik, M Omer, MC Pflederer et al. Keywords: health status; left ventricular diastolic dysfunction; TAVR

ABSTRACT

OBJECTIVES - The aim of this study was to assess the association of baseline left ventricular diastolic dysfunction (LVDD) with health status outcomes of patients undergoing transcatheter aortic valve replacement (TAVR).

 

BACKGROUND - Although LVDD in patients with aortic stenosis is associated with higher mortality after TAVR, it is unknown if it is also associated with health status recovery.

 

METHODS - In a cohort of 304 patients with interpretable echocardiograms, undergoing TAVR, LVDD was categorized at baseline as absent (grade 0), mild (grade 1), moderate (grade 2), or severe (grade 3). Disease-specific health status was assessed using the 12-item Kansas City Cardiomyopathy Questionnaire overall summary score (KCCQ-OS) at baseline and at 1-month and 12-month follow-up. Association of baseline LVDD with health status at baseline and follow-up after TAVR was assessed using a linear trend test, and association with health status recovery (change in KCCQ-OS) was examined using a linear mixed model adjusting for baseline KCCQ-OS.

 

RESULTS - Twenty-four (7.9%), 54 (17.8%), 186 (61.2%), and 40 (13.2%) patients had LVDD grades of 0, 1, 2, and 3, respectively. Baseline KCCQ-OS was 61.3 ± 22.7, 51.0 ± 26.1, 44.7 ± 25.7, and 44.4 ± 21.9 (p = 0.004) in patients with LVDD grades of 0, 1,2 and 3. At 1 and 12 months after TAVR, LVDD was not associated with KCCQ-OS. Recovery in KCCQ-OS after TAVR was substantial and similar in patients across all severities of LVDD.

 

CONCLUSIONS - Although LVDD is associated with health status prior to TAVR, patients across all severities of LVDD have similar recovery in health status after TAVR.