CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

5-Year Outcomes Comparing Surgical Versus Transcatheter Aortic Valve Replacement in Patients With Chronic Kidney Disease Assessment and Quantitation of Stent Results by Intracoronary Optical Coherence Tomography A Prospective, Multicenter, Randomized, Open-label Trial to Compare Efficacy and Safety of Clopidogrel vs. Ticagrelor in Stabilized Patients with Acute Myocardial Infarction after Percutan eous Coronary Intervention: rationale and design of the TALOS-AMI trial Pulmonary artery denervation for treatment of a patient with pulmonary hypertension secondary to left heart disease The contribution of tissue-grouped BMI-associated gene sets to cardiometabolic-disease risk: a Mendelian randomization study Higher neutrophil-to-lymphocyte ratio (NLR) increases the risk of suboptimal platelet inhibition and major cardiovascular ischemic events among ACS patients receiving dual antiplatelet therapy with ticagrelor EXCELling in Left Main Intervention Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel Global Approach to High Bleeding Risk Patients With Polymer-Free Drug-Coated Coronary Stents: The LF II Study Effects of Icosapent Ethyl on Total Ischemic Events: From REDUCE-IT

Review Article03 January 2020

JOURNAL:Eur Heart J. Article Link

Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis

L Faroux, S Chen, J Rodés-Cabau et al. Keywords: heart failure; left bundle-branch block; proton pump inhibitors; persistence pacemaker;permanent transcatheter aortic-valve implantation

ABSTRACT


AIMS - The clinical impact of new-onset persistent left bundle branch block (NOP-LBBB) and permanent pacemaker implantation (PPI) on transcatheter aortic valve replacement (TAVR) recipients remains controversial. We aimed to evaluate the impact of (i) periprocedural NOP-LBBB and PPI post-TAVR on 1-year all-cause death, cardiac death, and heart failure hospitalization and (ii) NOP-LBBB on the need for PPI at 1-year follow-up.

 

METHODS AND RESULTS - We performed a systematic search from PubMed and EMBASE databases for studies reporting raw data on 1-year clinical impact of NOP-LBBB or periprocedural PPI post-TAVR. Data from 30 studies, including 7792 patients (12 studies) and 42 927 patients (21 studies) for the evaluation of the impact of NOP-LBBB and PPI after TAVR were sourced, respectively. NOP-LBBB was associated with an increased risk of all-cause death [risk ratio (RR) 1.32, 95% confidence interval (CI) 1.171.49; P < 0.001], cardiac death (RR 1.46, 95% CI 1.201.78; P < 0.001), heart failure hospitalization (RR 1.35, 95% CI 1.051.72; P = 0.02), and PPI (RR 1.89, 95% CI 1.582.27; P < 0.001) at 1-year follow-up. Periprocedural PPI after TAVR was associated with a higher risk of all-cause death (RR 1.17, 95% CI 1.111.25; P < 0.001) and heart failure hospitalization (RR 1.18, 95% CI 1.031.36; P = 0.02). Permanent pacemaker implantation was not associated with an increased risk of cardiac death (RR 0.84, 95% CI 0.671.05; P = 0.13).

 

CONCLUSION - NOP-LBBB and PPI after TAVR are associated with an increased risk of all-cause death and heart failure hospitalization at 1-year follow-up. Periprocedural NOP-LBBB also increased the risk of cardiac death and PPI within the year following the procedure. Further studies are urgently warranted to enhance preventive measures and optimize the management of conduction disturbances post-TAVR.