CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Incidence and Outcomes of Acute Coronary Syndrome After Transcatheter Aortic Valve Replacement Timing of Oral P2Y12 Inhibitor Administration in Patients With Non-ST-Segment Elevation Acute Coronary Syndrome High-Sensitivity Troponin and The Application of Risk Stratification Thresholds in Patients with Suspected Acute Coronary Syndrome Stent Thrombosis Risk Over Time on the Basis of Clinical Presentation and Platelet Reactivity: Analysis From ADAPT-DES Rotational atherectomy and new-generation drug-eluting stent implantation Open sesame technique in percutaneous coronary intervention for ST-elevation myocardial infarction Antithrombotic Therapy in Patients With Atrial Fibrillation and Acute Coronary Syndrome Step-by-step manual for planning and performing bifurcation PCI: a resource-tailored approach Red Cell Distribution Width in Patients with Diabetes and Myocardial Infarction: an analysis from the EXAMINE trial Clinical and Angiographic Features of Patients With Out-of-Hospital Cardiac Arrest and Acute Myocardial Infarction

Review Article03 January 2020

JOURNAL:Eur Heart J. Article Link

Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis

L Faroux, S Chen, J Rodés-Cabau et al. Keywords: heart failure; left bundle-branch block; proton pump inhibitors; persistence pacemaker;permanent transcatheter aortic-valve implantation

ABSTRACT


AIMS - The clinical impact of new-onset persistent left bundle branch block (NOP-LBBB) and permanent pacemaker implantation (PPI) on transcatheter aortic valve replacement (TAVR) recipients remains controversial. We aimed to evaluate the impact of (i) periprocedural NOP-LBBB and PPI post-TAVR on 1-year all-cause death, cardiac death, and heart failure hospitalization and (ii) NOP-LBBB on the need for PPI at 1-year follow-up.

 

METHODS AND RESULTS - We performed a systematic search from PubMed and EMBASE databases for studies reporting raw data on 1-year clinical impact of NOP-LBBB or periprocedural PPI post-TAVR. Data from 30 studies, including 7792 patients (12 studies) and 42 927 patients (21 studies) for the evaluation of the impact of NOP-LBBB and PPI after TAVR were sourced, respectively. NOP-LBBB was associated with an increased risk of all-cause death [risk ratio (RR) 1.32, 95% confidence interval (CI) 1.171.49; P < 0.001], cardiac death (RR 1.46, 95% CI 1.201.78; P < 0.001), heart failure hospitalization (RR 1.35, 95% CI 1.051.72; P = 0.02), and PPI (RR 1.89, 95% CI 1.582.27; P < 0.001) at 1-year follow-up. Periprocedural PPI after TAVR was associated with a higher risk of all-cause death (RR 1.17, 95% CI 1.111.25; P < 0.001) and heart failure hospitalization (RR 1.18, 95% CI 1.031.36; P = 0.02). Permanent pacemaker implantation was not associated with an increased risk of cardiac death (RR 0.84, 95% CI 0.671.05; P = 0.13).

 

CONCLUSION - NOP-LBBB and PPI after TAVR are associated with an increased risk of all-cause death and heart failure hospitalization at 1-year follow-up. Periprocedural NOP-LBBB also increased the risk of cardiac death and PPI within the year following the procedure. Further studies are urgently warranted to enhance preventive measures and optimize the management of conduction disturbances post-TAVR.