CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Influence of LDL-Cholesterol Lowering on Cardiovascular Outcomes in Patients With Diabetes Mellitus Undergoing Coronary Revascularization Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials JACC Scientific Expert Panel AIM2-driven inflammasome activation in heart failure Impact of Optimal Medical Therapy on 10-Year Mortality After Coronary Revascularization Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia 2-year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy Timing and Causes of Unplanned Readmissions After Percutaneous Coronary Intervention: Insights From the Nationwide Readmission Database Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation The mSToPS Randomized Clinical Trial Defining High Bleeding Risk in Patients Undergoing Percutaneous Coronary Intervention: A Consensus Document From the Academic Research Consortium for High Bleeding Risk Residual Inflammatory Risk in Patients With Low LDL Cholesterol Levels Undergoing Percutaneous Coronary Intervention

Review Article03 January 2020

JOURNAL:Eur Heart J. Article Link

Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis

L Faroux, S Chen, J Rodés-Cabau et al. Keywords: heart failure; left bundle-branch block; proton pump inhibitors; persistence pacemaker;permanent transcatheter aortic-valve implantation

ABSTRACT


AIMS - The clinical impact of new-onset persistent left bundle branch block (NOP-LBBB) and permanent pacemaker implantation (PPI) on transcatheter aortic valve replacement (TAVR) recipients remains controversial. We aimed to evaluate the impact of (i) periprocedural NOP-LBBB and PPI post-TAVR on 1-year all-cause death, cardiac death, and heart failure hospitalization and (ii) NOP-LBBB on the need for PPI at 1-year follow-up.

 

METHODS AND RESULTS - We performed a systematic search from PubMed and EMBASE databases for studies reporting raw data on 1-year clinical impact of NOP-LBBB or periprocedural PPI post-TAVR. Data from 30 studies, including 7792 patients (12 studies) and 42 927 patients (21 studies) for the evaluation of the impact of NOP-LBBB and PPI after TAVR were sourced, respectively. NOP-LBBB was associated with an increased risk of all-cause death [risk ratio (RR) 1.32, 95% confidence interval (CI) 1.171.49; P < 0.001], cardiac death (RR 1.46, 95% CI 1.201.78; P < 0.001), heart failure hospitalization (RR 1.35, 95% CI 1.051.72; P = 0.02), and PPI (RR 1.89, 95% CI 1.582.27; P < 0.001) at 1-year follow-up. Periprocedural PPI after TAVR was associated with a higher risk of all-cause death (RR 1.17, 95% CI 1.111.25; P < 0.001) and heart failure hospitalization (RR 1.18, 95% CI 1.031.36; P = 0.02). Permanent pacemaker implantation was not associated with an increased risk of cardiac death (RR 0.84, 95% CI 0.671.05; P = 0.13).

 

CONCLUSION - NOP-LBBB and PPI after TAVR are associated with an increased risk of all-cause death and heart failure hospitalization at 1-year follow-up. Periprocedural NOP-LBBB also increased the risk of cardiac death and PPI within the year following the procedure. Further studies are urgently warranted to enhance preventive measures and optimize the management of conduction disturbances post-TAVR.