CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Limitations of Repeat Revascularization as an Outcome Measure Novel developments in revascularization for left main coronary artery disease Blood Pressure Assessment in Adults in Clinical Practice and Clinic-Based Research: JACC Scientific Expert Panel Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Implantation Healthy Behavior, Risk Factor Control, and Survival in the COURAGE Trial Genetics and Causality of Triglyceride-Rich Lipoproteins in Atherosclerotic Cardiovascular Disease Coronary bifurcation lesions treated with simple or complex stenting: 5-year survival from patient-level pooled analysis of the Nordic Bifurcation Study and the British Bifurcation Coronary Study Aggressive lipid-lowering therapy after percutaneous coronary intervention – for whom and how?

Original Research

JOURNAL:ACC Article Link

TAVR: Role of Multimodality Imaging

Pre-reading

The following are key points to remember from this state-of-the-art review on transcatheter aortic valve replacement (TAVR) and the role of multimodality imaging in common and complex clinical scenarios:

  1. 1. TAVR has rapidly become an established therapy for patients with symptomatic severe aortic stenosis (AS).
  2. 2. Technological advances and the learning curve have resulted in better procedural results in terms of hemodynamic valve performance and intermediate-term clinical outcomes.
  3. 3. The integration of anatomical and functional information provided by multimodality imaging has improved size selection of TAVR prostheses, permitted better patient selection, and provided new insights in the performance of the TAVR prostheses at follow-up.
  4. 4. The use of 3D imaging techniques (multi-detector row computed tomography [MDCT], cardiac magnetic resonance [CMR], and 3D echocardiography) that permit accurate measurement of the left ventricular outflow tract area by direct planimetry has demonstrated the ability to reclassify severe AS patients into moderate AS by 12% in patients with low-flow, low-gradient severe AS.
  5. 5. Furthermore, the field of TAVR continues to develop and expand the technique to younger patients with lower risk on the one hand, and more complex clinical scenarios, on the other hand, such as degenerated aortic bioprostheses, bicuspid aortic valves, or pure native aortic regurgitation.
  6. 6. The use of both echocardiography and MDCT is key in the diagnosis of patients with severe AS who may benefit from TAVR as well as in the procedural planning and evaluation of the results at follow-up.
  7. 7. The number of patients with bicuspid AS treated with TAVR is increasing and the TAVR results with the use of new generation prostheses are promising.
  8. 8. TAVR in degenerated bioprosthesis has been an important recent breakthrough because re-operation in these individuals is associated with very high mortality.
  9. 9. Patients with native aortic regurgitation are also now being treated with TAVR.
  10. 10. These newer indications for TAVR need careful imaging evaluation of the anatomy of the landing zone to ensure successful anchoring of the TAVR prosthesis and to minimize complications. These new horizons for TAVR are making multimodality imaging critically important for this evolving therapy.