CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Negative Risk Markers for Cardiovascular Events in the Elderly Positive remodeling at 3 year follow up is associated with plaque-free coronary wall segment at baseline: a serial IVUS study Meta-Analysis of Comparison of 5-Year Outcomes of Percutaneous Coronary Intervention Versus Coronary Artery Bypass Grafting in Patients With Unprotected Left Main Coronary Artery in the Era of Drug-eluting Stents Noninvasive Imaging for the Evaluation of Diastolic Function: Promises Fulfilled Long-term results after PCI of unprotected distal left main coronary artery stenosis: the Bifurcations Bad Krozingen (BBK)-Left Main Registry Usefulness of intravascular ultrasound to predict outcomes in short-length lesions treated with drug-eluting stents Long-term outcome of prosthesis-patient mismatch after transcatheter aortic valve replacement Defining a new standard for IVUS optimized drug eluting stent implantation: the PRAVIO study Differential prognostic impact of treatment strategy among patients with left main versus non-left main bifurcation lesions undergoing percutaneous coronary intervention: results from the COBIS (Coronary Bifurcation Stenting) Registry II Regurgitant Volume/Left Ventricular End-Diastolic Volume Ratio: Prognostic Value in Patients With Secondary Mitral Regurgitation

Original Researcholume 74, Issue 25, December 2019

JOURNAL:J Am Coll Cardiol. Article Link

Transition of Macrophages to Fibroblast-Like Cells in Healing Myocardial Infarction

N Haider, L Boscá, HR Zandbergen et al. Keywords: cardiac fibroblast; fibroblast markers; infiltration; macrophage/fibroblast-like transition; myeloid tracers; MI

ABSTRACT


BACKGROUND - Macrophages and fibroblasts are 2 major cell types involved in healing after myocardial infarction (MI), contributing to myocardial remodeling and fibrosis. Post-MI fibrosis progression is characterized by a decrease in cardiac macrophage content.


OBJECTIVES - This study explores the potential of macrophages to express fibroblast genes and the direct role of these cells in post-MI cardiac fibrosis.


METHODS - Prolonged in vitro culture of human macrophages was used to evaluate the capacity to express fibroblast markers. Infiltrating cardiac macrophages was tracked in vivo after experimental MI of LysM(Cre/+);ROSA26(EYFP/+) transgenic mice. The expression of Yellow Fluorescent Protein (YFP) in these animals is restricted to myeloid lineage allowing the identification of macrophage-derived fibroblasts. The expression in YFP-positive cells of fibroblast markers was determined in myocardial tissue sections of hearts from these mice after MI.


RESULTS - Expression of the fibroblast markers type I collagen, prolyl-4-hydroxylase, fibroblast specific protein-1, and fibroblast activation protein was evidenced in YFP-positive cells in the heart after MI. The presence of fibroblasts after MI was evaluated in the hearts of animals after depletion of macrophages with clodronate liposomes. This macrophage depletion significantly reduced the number of Mac3+Col1A1+ cells in the heart after MI.


CONCLUSIONS -  The data provide both in vitro and in vivo evidence for the ability of macrophages to transition and adopt a fibroblast-like phenotype. Therapeutic manipulation of this macrophage-fibroblast transition may hold promise for favorably modulating the fibrotic response after MI and after other cardiovascular pathological processes.