CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Left Atrial Appendage Closure versus Non-Warfarin Oral Anticoagulation in Atrial Fibrillation: 4-Year Outcomes of PRAGUE-17 Frailty and Clinical Outcomes of Direct Oral Anticoagulants Versus Warfarin in Older Adults With Atrial Fibrillation: A Cohort Study Patent Foramen Ovale Attributable Cryptogenic Embolism With Thrombophilia Has Higher Risk for Recurrence and Responds to Closure Alcohol consumption, cardiac biomarkers, and risk of atrial fibrillation and adverse outcomes Role of endothelial dysfunction in determining angina after percutaneous coronary intervention: Learning from pathophysiology to optimize treatment Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress-Induced, Piezo-1-Mediated Monocyte Activation Systematic Review and Network Meta‐Analysis Comparing Bifurcation Techniques for Percutaneous Coronary Intervention Residual Shunt After Patent Foramen Ovale Closure and Long-Term Stroke Recurrence: A Prospective Cohort Study Potential Candidates for Transcatheter Tricuspid Valve Intervention After Transcatheter Aortic Valve Replacement: Predictors and Prognosis

Original Researcholume 74, Issue 25, December 2019

JOURNAL:J Am Coll Cardiol. Article Link

Transition of Macrophages to Fibroblast-Like Cells in Healing Myocardial Infarction

N Haider, L Boscá, HR Zandbergen et al. Keywords: cardiac fibroblast; fibroblast markers; infiltration; macrophage/fibroblast-like transition; myeloid tracers; MI

ABSTRACT


BACKGROUND - Macrophages and fibroblasts are 2 major cell types involved in healing after myocardial infarction (MI), contributing to myocardial remodeling and fibrosis. Post-MI fibrosis progression is characterized by a decrease in cardiac macrophage content.


OBJECTIVES - This study explores the potential of macrophages to express fibroblast genes and the direct role of these cells in post-MI cardiac fibrosis.


METHODS - Prolonged in vitro culture of human macrophages was used to evaluate the capacity to express fibroblast markers. Infiltrating cardiac macrophages was tracked in vivo after experimental MI of LysM(Cre/+);ROSA26(EYFP/+) transgenic mice. The expression of Yellow Fluorescent Protein (YFP) in these animals is restricted to myeloid lineage allowing the identification of macrophage-derived fibroblasts. The expression in YFP-positive cells of fibroblast markers was determined in myocardial tissue sections of hearts from these mice after MI.


RESULTS - Expression of the fibroblast markers type I collagen, prolyl-4-hydroxylase, fibroblast specific protein-1, and fibroblast activation protein was evidenced in YFP-positive cells in the heart after MI. The presence of fibroblasts after MI was evaluated in the hearts of animals after depletion of macrophages with clodronate liposomes. This macrophage depletion significantly reduced the number of Mac3+Col1A1+ cells in the heart after MI.


CONCLUSIONS -  The data provide both in vitro and in vivo evidence for the ability of macrophages to transition and adopt a fibroblast-like phenotype. Therapeutic manipulation of this macrophage-fibroblast transition may hold promise for favorably modulating the fibrotic response after MI and after other cardiovascular pathological processes.