CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty Pulmonary Artery Denervation: An Alternative Therapy for Pulmonary Hypertension Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation Clinical Predictors for Lack of Favorable Vascular Response to Statin Therapy in Patients With Coronary Artery Disease: A Serial Optical Coherence Tomography Study Long-term outcomes of routine versus provisional T-stenting for de novo coronary bifurcation lesions: five-year results of the Bifurcations Bad Krozingen I study Optimal threshold of postintervention minimum stent area to predict in-stent restenosis in small coronary arteries: An optical coherence tomography analysis Assessment of the coronary calcification by optical coherence tomography Lysed Erythrocyte Membranes Promote Vascular Calcification: Possible Role of Erythrocyte-Derived Nitric Oxide Impact of an optical coherence tomography guided approach in acute coronary syndromes: A propensity matched analysis from the international FORMIDABLE-CARDIOGROUP IV and USZ registry Optical coherence tomography and C-reactive protein in risk stratification of acute coronary syndromes

Review ArticleVolume 75, Issue 8, March 2020

JOURNAL:J Am Coll Cardiol. Article Link

Mechanisms of Vascular Aging, A Geroscience Perspective JACC Focus Seminar

Z Ungvari, S Tarantini, F Sorond et al. Keywords: atherosclerosis; endothelial dysfunction; geroscience; microcirculation; senescence

ABSTRACT

Age-related pathological alterations of the vasculature have a critical role in morbidity and mortality of older adults. In epidemiological studies, age is the single most important cardiovascular risk factor that dwarfs the impact of traditional risk factors. To develop novel therapeutic interventions for prevention of age-related vascular pathologies, it is crucial to understand the cellular and molecular mechanisms of vascular aging. In this review, shared molecular mechanisms of aging are considered in terms of their contribution to the pathogenesis of macrovascular and microvascular diseases associated with old age. The role of cellular senescence in development of vascular aging phenotypes is highlighted, and potential interventions to prevent senescence and to eliminate senescent cells for prevention of vascular pathologies are presented. The evidence supporting a role for interorgan communication and circulating progeronic and antigeronic factors in vascular aging is discussed.