CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

The contribution of tissue-grouped BMI-associated gene sets to cardiometabolic-disease risk: a Mendelian randomization study 2020 ACC Expert Consensus Decision Pathway on Management of Conduction Disturbances in Patients Undergoing Transcatheter Aortic Valve Replacement A Report of the American College of Cardiology Solution Set Oversight Committee EXCELling in Left Main Intervention 5-Year Outcomes Comparing Surgical Versus Transcatheter Aortic Valve Replacement in Patients With Chronic Kidney Disease Decline in Left Ventricular Ejection Fraction During Follow-Up in Patients With Severe Aortic Stenosis Ascending Aortic Length and Risk of Aortic Adverse Events: The Neglected Dimension A Prospective, Multicenter, Randomized, Open-label Trial to Compare Efficacy and Safety of Clopidogrel vs. Ticagrelor in Stabilized Patients with Acute Myocardial Infarction after Percutan eous Coronary Intervention: rationale and design of the TALOS-AMI trial Contemporary Presentation and Management of Valvular Heart Disease: The EURObservational Research Programme Valvular Heart Disease II Survey Global Approach to High Bleeding Risk Patients With Polymer-Free Drug-Coated Coronary Stents: The LF II Study Ten-Year All-Cause Death According to Completeness of Revascularization in Patients With Three-Vessel Disease or Left Main Coronary Artery Disease: Insights From the SYNTAX Extended Survival Study

Original ResearchFebruary 26, 2020

JOURNAL:Circulation. Article Link

Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of CHK1 via Activating mTORC1/P70S6K Pathway

Y Fan, XJ Guo, LS Wang et al. Keywords: regenerative myocardium

ABSTRACT


BACKGROUND - In mammalian, regenerative therapy after myocardial infarction (MI) is hampered by the limited regenerative capacity of adult heart, while a transient regenerative capacity is maintained in the neonatal heart. Systemic phosphorylation signaling analysis on ischemic neonatal myocardium might be helpful to identify key pathways involved in heart regeneration. We aimed to define kinase-substrate network in ischemic neonatal myocardium and identify key pathways involved in heart regeneration post ischemic insult.

 

METHODS - Quantitative phosphoproteomics profiling was performed on infarct border zone of neonatal myocardium, and kinase-substrate network analysis revealed 11 kinases with enriched substrates and upregulated phosphorylation levels including CHK1 kinase. The effect of CHK1 on cardiac regeneration was tested on ICR-CD1 neonatal and adult mice underwent apical resection or MI.

 

RESULTS - In vitro, CHK1 overexpression promoted, while CHK1 knockdown blunted cardiomyocyte (CM) proliferation. In vivo, inhibition of CHK1 hindered myocardial regeneration on resection border zone in neonatal mice. In adult MI mice, CHK1 overexpression on infarct border zone upregulated mTORC1/P70S6K pathway, promoted CM proliferation and improved cardiac function. Inhibiting mTOR activity by rapamycin blunted the neonatal CM proliferation induced by CHK1 overexpression in vitro.

 

CONCLUSIONS - Our study indicates that phosphoproteome of neonatal regenerative myocardium could help identify important signaling pathways involved in myocardial regeneration. CHK1 is found to be a key signaling responsible for neonatal regeneration. Myocardial overexpression of CHK1 could improve cardiac regeneration in adult hearts through activating mTORC1/P70S6K pathway, CHK1 might thus serve as a potential novel target in myocardial repair post MI.