CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Correction of a pathogenic gene mutation in human embryos Door-to-balloon time and mortality among patients undergoing primary PCI Clinical value of post-percutaneous coronary intervention fractional flow reserve value: A systematic review and meta-analysis Early Versus Standard Discharge After Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis Australian Trends in Procedural Characteristics and Outcomes in Patients Undergoing Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction Balloon-to-door time: emerging evidence for shortening hospital stay after primary PCI for STEMI Incidence, Treatment, and Outcomes of Coronary Perforation During Chronic Total Occlusion Percutaneous Coronary Intervention Trends in early aspirin use among patients with acute myocardial infarction in China, 2001-2011: the China PEACE-Retrospective AMI study Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps) Temporal trends in percutaneous coronary interventions thru the drug eluting stent era: Insights from 18,641 procedures performed over 12-year period

Original ResearchFebruary 26, 2020

JOURNAL:Circulation. Article Link

Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of CHK1 via Activating mTORC1/P70S6K Pathway

Y Fan, XJ Guo, LS Wang et al. Keywords: regenerative myocardium

ABSTRACT


BACKGROUND - In mammalian, regenerative therapy after myocardial infarction (MI) is hampered by the limited regenerative capacity of adult heart, while a transient regenerative capacity is maintained in the neonatal heart. Systemic phosphorylation signaling analysis on ischemic neonatal myocardium might be helpful to identify key pathways involved in heart regeneration. We aimed to define kinase-substrate network in ischemic neonatal myocardium and identify key pathways involved in heart regeneration post ischemic insult.

 

METHODS - Quantitative phosphoproteomics profiling was performed on infarct border zone of neonatal myocardium, and kinase-substrate network analysis revealed 11 kinases with enriched substrates and upregulated phosphorylation levels including CHK1 kinase. The effect of CHK1 on cardiac regeneration was tested on ICR-CD1 neonatal and adult mice underwent apical resection or MI.

 

RESULTS - In vitro, CHK1 overexpression promoted, while CHK1 knockdown blunted cardiomyocyte (CM) proliferation. In vivo, inhibition of CHK1 hindered myocardial regeneration on resection border zone in neonatal mice. In adult MI mice, CHK1 overexpression on infarct border zone upregulated mTORC1/P70S6K pathway, promoted CM proliferation and improved cardiac function. Inhibiting mTOR activity by rapamycin blunted the neonatal CM proliferation induced by CHK1 overexpression in vitro.

 

CONCLUSIONS - Our study indicates that phosphoproteome of neonatal regenerative myocardium could help identify important signaling pathways involved in myocardial regeneration. CHK1 is found to be a key signaling responsible for neonatal regeneration. Myocardial overexpression of CHK1 could improve cardiac regeneration in adult hearts through activating mTORC1/P70S6K pathway, CHK1 might thus serve as a potential novel target in myocardial repair post MI.