CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Percutaneous Coronary Intervention For Bifurcation Coronary Lesions.The 15th Consensus Document from the European Bifurcation Club Optical Coherence Tomography–Defined Plaque Vulnerability in Relation to Functional Stenosis Severity and Microvascular Dysfunction Drug-Coated Balloons for Coronary Artery Disease: Third Report of the International DCB Consensus Group Prognostic Implication of Functional Incomplete Revascularization and Residual Functional SYNTAX Score in Patients With Coronary Artery Disease Management of pulmonary hypertension from left heart disease in candidates for orthotopic heart transplantation Physiology-Based Revascularization: A New Approach to Plan and Optimize Percutaneous Coronary Intervention: State-of-the-Art Review The Hybrid Approach to Chronic Total Occlusion Percutaneous Coronary Intervention: Update From the PROGRESS CTO Registry Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study Multicenter Registry of Real-World Patients With Severely Calcified Coronary Lesions Undergoing Orbital Atherectomy: 1-Year Outcomes Clinical and angiographic outcomes of coronary dissection after paclitaxel-coated balloon angioplasty for small vessel coronary artery disease

Original ResearchFebruary 26, 2020

JOURNAL:Circulation. Article Link

Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of CHK1 via Activating mTORC1/P70S6K Pathway

Y Fan, XJ Guo, LS Wang et al. Keywords: regenerative myocardium

ABSTRACT


BACKGROUND - In mammalian, regenerative therapy after myocardial infarction (MI) is hampered by the limited regenerative capacity of adult heart, while a transient regenerative capacity is maintained in the neonatal heart. Systemic phosphorylation signaling analysis on ischemic neonatal myocardium might be helpful to identify key pathways involved in heart regeneration. We aimed to define kinase-substrate network in ischemic neonatal myocardium and identify key pathways involved in heart regeneration post ischemic insult.

 

METHODS - Quantitative phosphoproteomics profiling was performed on infarct border zone of neonatal myocardium, and kinase-substrate network analysis revealed 11 kinases with enriched substrates and upregulated phosphorylation levels including CHK1 kinase. The effect of CHK1 on cardiac regeneration was tested on ICR-CD1 neonatal and adult mice underwent apical resection or MI.

 

RESULTS - In vitro, CHK1 overexpression promoted, while CHK1 knockdown blunted cardiomyocyte (CM) proliferation. In vivo, inhibition of CHK1 hindered myocardial regeneration on resection border zone in neonatal mice. In adult MI mice, CHK1 overexpression on infarct border zone upregulated mTORC1/P70S6K pathway, promoted CM proliferation and improved cardiac function. Inhibiting mTOR activity by rapamycin blunted the neonatal CM proliferation induced by CHK1 overexpression in vitro.

 

CONCLUSIONS - Our study indicates that phosphoproteome of neonatal regenerative myocardium could help identify important signaling pathways involved in myocardial regeneration. CHK1 is found to be a key signaling responsible for neonatal regeneration. Myocardial overexpression of CHK1 could improve cardiac regeneration in adult hearts through activating mTORC1/P70S6K pathway, CHK1 might thus serve as a potential novel target in myocardial repair post MI.