CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs Coronary Calcification and Long-Term Outcomes According to Drug-Eluting Stent Generation The Regulation of Pulmonary Vascular Tone by Neuropeptides and the Implications for Pulmonary Hypertension Association Between Malignant Mitral Valve Prolapse and Sudden Cardiac Death: A Review Thrombotic Risk and Antithrombotic Strategies After Transcatheter Mitral Valve Replacement Benefits with drug-coated balloon as compared to a conventional revascularization strategy for the treatment of coronary and non-coronary arterial disease: a comprehensive meta-analysis of 45 randomized trials Five-Year Clinical Outcomes After Drug-Eluting Stent Implantation Following Rotational Atherectomy for Heavily Calcified Lesions Orbital atherectomy for the treatment of small (2.5mm) severely calcified coronary lesions: ORBIT II sub-analysis Initial experience with percutaneous mitral valve repair in patients with cardiac amyloidosis The Tricuspid Annular Plane Systolic Excursion to Systolic Pulmonary Artery Pressure Index: Association With All-Cause Mortality in Patients With Moderate or Severe Tricuspid Regurgitation

Original ResearchFebruary 26, 2020

JOURNAL:Circulation. Article Link

Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of CHK1 via Activating mTORC1/P70S6K Pathway

Y Fan, XJ Guo, LS Wang et al. Keywords: regenerative myocardium

ABSTRACT


BACKGROUND - In mammalian, regenerative therapy after myocardial infarction (MI) is hampered by the limited regenerative capacity of adult heart, while a transient regenerative capacity is maintained in the neonatal heart. Systemic phosphorylation signaling analysis on ischemic neonatal myocardium might be helpful to identify key pathways involved in heart regeneration. We aimed to define kinase-substrate network in ischemic neonatal myocardium and identify key pathways involved in heart regeneration post ischemic insult.

 

METHODS - Quantitative phosphoproteomics profiling was performed on infarct border zone of neonatal myocardium, and kinase-substrate network analysis revealed 11 kinases with enriched substrates and upregulated phosphorylation levels including CHK1 kinase. The effect of CHK1 on cardiac regeneration was tested on ICR-CD1 neonatal and adult mice underwent apical resection or MI.

 

RESULTS - In vitro, CHK1 overexpression promoted, while CHK1 knockdown blunted cardiomyocyte (CM) proliferation. In vivo, inhibition of CHK1 hindered myocardial regeneration on resection border zone in neonatal mice. In adult MI mice, CHK1 overexpression on infarct border zone upregulated mTORC1/P70S6K pathway, promoted CM proliferation and improved cardiac function. Inhibiting mTOR activity by rapamycin blunted the neonatal CM proliferation induced by CHK1 overexpression in vitro.

 

CONCLUSIONS - Our study indicates that phosphoproteome of neonatal regenerative myocardium could help identify important signaling pathways involved in myocardial regeneration. CHK1 is found to be a key signaling responsible for neonatal regeneration. Myocardial overexpression of CHK1 could improve cardiac regeneration in adult hearts through activating mTORC1/P70S6K pathway, CHK1 might thus serve as a potential novel target in myocardial repair post MI.