CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Edoxaban versus Vitamin K Antagonist for Atrial Fibrillation after TAVR Coronary Microcirculation in Ischemic Heart Disease Stress Echocardiography and PH: What Do the Findings Mean? Diagnostic Accuracy of Angiography-Based Quantitative Flow Ratio Measurements for Online Assessment of Coronary Stenosis The Year in Cardiovascular Medicine 2020: Coronary Prevention: Looking back on the Year in Cardiovascular Medicine for 2020 in the field of coronary prevention is Professor Ramon Estruch, Dr Luis Ruilope, and Professor Francesco Cosentino. Mark Nicholls meets them Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA) Rationale and design of a prospective substudy of clinical endpoint adjudication processes within an investigator-reported randomised controlled trial in patients with coronary artery disease: the GLOBAL LEADERS Adjudication Sub-StudY (GLASSY) Intravascular Imaging and 12-Month Mortality After Unprotected Left Main Stem PCI: An Analysis From the British Cardiovascular Intervention Society Database Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation

Original ResearchVolume 13, Issue 8, April 2020

JOURNAL:JACC: Cardiovascular Interventions Article Link

Incidence and Outcomes of Acute Coronary Syndrome After Transcatheter Aortic Valve Replacement

AMentias, MY Desai, M Saad et al. Keywords: ACS; post TAVR; PCI

ABSTRACT


OBJECTIVES - This study sought to address a knowledge gap by examining the incidence, timing, and predictors of acute coronary syndrome (ACS) after transcatheter aortic valve replacement (TAVR) in Medicare beneficiaries.

 

BACKGROUND - Evidence about incidence and outcomes of ACS after TAVR is scarce.

 

METHODS - We identified medicare patients who underwent tavr from 2012 to 2017 and were admitted with ACS during follow-up. We compared outcomes based on the type of ACS: ST-segment elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), and unstable angina. In patients with nonST-segment elevation ACS, we compared outcomes based on the treatment strategy (invasive vs. conservative) using inverse probability weighting analysis.

 

RESULTS - Out of 142,845 patients with TAVR, 6,741 patients (4.7%) were admitted with ACS after a median time of 297 days (interquartile range: 85 to 662 days), with 48% of admissions occurring within 6 months. The most common presentation was NSTEMI. Predictors of ACS were history of coronary artery disease, prior revascularization, diabetes, valve-in-TAVR, and acute kidney injury. STEMI was associated with higher 30-day and 1-year mortality compared with NSTEMI (31.4% vs. 15.5% and 51.2% vs. 41.3%, respectively; p < 0.01). Overall, 30.3% of patients with nonST-segment elevation ACS were treated with invasive approach. On inverse probability weighting analysis, invasive approach was associated with lower adjusted long-term mortality (adjusted hazard ratio: 0.69; 95% confidence interval: 0.66 to 0.73; p < 0.01) and higher risk of repeat revascularization (adjusted hazard ratio: 1.29; 95% confidence interval: 1.16 to 1.43; p < 0.001).

 

CONCLUSIONS - After TAVR, ACS is infrequent (<5%), and the most common presentation is NSTEMI. Occurrence of STEMI after TAVR is associated with a high mortality with nearly one-third of patients dying within 30 days. Optimization of care is needed for post-TAVR ACS patients and if feasible, invasive approach should be considered in these high-risk patients.