CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Association of Statin Use With All-Cause and Cardiovascular Mortality in US Veterans 75 Years and Older rhACE2 Therapy Modifies Bleomycin-Induced Pulmonary Hypertension via Rescue of Vascular Remodeling Extreme Levels of Air Pollution Associated With Changes in Biomarkers of Atherosclerotic Plaque Vulnerability and Thrombogenicity in Healthy Adults Nocturnal thoracic volume overload and post-discharge outcomes in patients hospitalized for acute heart failure Sex- and Race-Related Differences in Characteristics and Outcomes of Hospitalizations for Heart Failure With Preserved Ejection Fraction Plasma Ionized Calcium and Risk of Cardiovascular Disease: 106 774 Individuals from the Copenhagen General Population Study Prevalence and Outcomes of Concomitant Aortic Stenosis and Cardiac Amyloidosis Clinical Impact of Valvular Heart Disease in Elderly Patients Admitted for Acute Coronary Syndrome: Insights From the Elderly-ACS 2 Study Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis Coronary Access After TAVR

Original ResearchVolume 13, Issue 8, April 2020

JOURNAL:JACC: Cardiovascular Interventions Article Link

Incidence and Outcomes of Acute Coronary Syndrome After Transcatheter Aortic Valve Replacement

AMentias, MY Desai, M Saad et al. Keywords: ACS; post TAVR; PCI

ABSTRACT


OBJECTIVES - This study sought to address a knowledge gap by examining the incidence, timing, and predictors of acute coronary syndrome (ACS) after transcatheter aortic valve replacement (TAVR) in Medicare beneficiaries.

 

BACKGROUND - Evidence about incidence and outcomes of ACS after TAVR is scarce.

 

METHODS - We identified medicare patients who underwent tavr from 2012 to 2017 and were admitted with ACS during follow-up. We compared outcomes based on the type of ACS: ST-segment elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), and unstable angina. In patients with nonST-segment elevation ACS, we compared outcomes based on the treatment strategy (invasive vs. conservative) using inverse probability weighting analysis.

 

RESULTS - Out of 142,845 patients with TAVR, 6,741 patients (4.7%) were admitted with ACS after a median time of 297 days (interquartile range: 85 to 662 days), with 48% of admissions occurring within 6 months. The most common presentation was NSTEMI. Predictors of ACS were history of coronary artery disease, prior revascularization, diabetes, valve-in-TAVR, and acute kidney injury. STEMI was associated with higher 30-day and 1-year mortality compared with NSTEMI (31.4% vs. 15.5% and 51.2% vs. 41.3%, respectively; p < 0.01). Overall, 30.3% of patients with nonST-segment elevation ACS were treated with invasive approach. On inverse probability weighting analysis, invasive approach was associated with lower adjusted long-term mortality (adjusted hazard ratio: 0.69; 95% confidence interval: 0.66 to 0.73; p < 0.01) and higher risk of repeat revascularization (adjusted hazard ratio: 1.29; 95% confidence interval: 1.16 to 1.43; p < 0.001).

 

CONCLUSIONS - After TAVR, ACS is infrequent (<5%), and the most common presentation is NSTEMI. Occurrence of STEMI after TAVR is associated with a high mortality with nearly one-third of patients dying within 30 days. Optimization of care is needed for post-TAVR ACS patients and if feasible, invasive approach should be considered in these high-risk patients.