CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Clinical and angiographic outcomes of patients treated with everolimus-eluting stents or first-generation Paclitaxel-eluting stents for unprotected left main disease Management of Asymptomatic Severe Aortic Stenosis: Evolving Concepts in Timing of Valve Replacement Transcatheter Aortic Valve Replacement in Patients With Multivalvular Heart Disease Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality Cardiac surgery following transcatheter aortic valve replacement Determinants and Impact of Heart Failure Readmission Following Transcatheter Aortic Valve Replacement Long-Term All-Cause and Cause-Specific Mortality in Asymptomatic Patients With CAC ≥1,000: Results From the CAC Consortium The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis 2019 AHA/ACC Clinical Performance and Quality Measures for Adults With High Blood Pressure: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures Impact of Incomplete Coronary Revascularization on Late Ischemic and Bleeding Events after Transcatheter Aortic Valve Replacement

Original ResearchVolume 13, Issue 9, May 2020

JOURNAL:JACC: Cardiovascular Interventions Article Link

The Utility of Rapid Atrial Pacing Immediately Post-TAVR to Predict the Need for Pacemaker Implantation

A Krishnaswamy, Y Sammour, A Mangieri et al. Keywords: atrial pacing; electrophysiology study; permanent pacemaker implantation;TAVR

ABSTRACT

OBJECTIVES - The aim of this study was to determine the utility of rapid atrial pacing immediately after transcatheter aortic valve replacement (TAVR) to predict the need for permanent pacemaker implantation (PPI).

 

BACKGROUND - Risk stratification for patients without high-grade atrioventricular block (AVB) after TAVR is imprecise and based on anatomic considerations, electrocardiographic characteristics, and clinical suspicion. A more reliable assessment is necessary to minimize inpatient rhythm monitoring and/or reduce unnecessary PPI.

 

METHODS - Consecutive patients undergoing TAVR at 2 centers were included. After valve implantation in patients without pacemakers who did not have complete heart block or atrial fibrillation, the temporary pacemaker was withdrawn from the right ventricle and placed in the right atrium. Rapid atrial pacing was performed from 70 to 120 beats/min, and patients were assessed for the development of Wenckebach AVB. Patients were then followed for clinical outcomes, including PPI.

 

RESULTS - A total of 284 patients were included. Of these, 130 (45.8%) developed Wenckebach AVB. There was a higher rate of PPI within 30 days of TAVR among the patients who developed Wenckebach AVB (13.1% vs. 1.3%; p < 0.001), with a negative predictive value for PPI in the group without Wenckebach AVB of 98.7%. A greater percentage of patients receiving self-expanding valves required PPI than those receiving a balloon-expandable valves (15.9% vs. 3.7%; p = 0.001), though these rates were still relatively low among patients who did not develop Wenckebach AVB (2.9% and 0.8%).

 

CONCLUSIONS - Atrial pacing post-TAVR is easily performed and can help identify patients who may benefit from extended rhythm monitoring. Patients who did not develop pacing-induced Wenckebach AVB demonstrated an extremely low likelihood of PPI.