CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention The Relation Between Optical Coherence Tomography-Detected Layered Pattern and Acute Side Branch Occlusion After Provisional Stenting of Coronary Bifurcation Lesions Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention Outcomes From the Pan-London PCI Cohort Spontaneous Coronary Artery Dissection: Pathophysiological Insights From Optical Coherence Tomography Clinical Impact of Suboptimal Stenting and Residual Intrastent Plaque/Thrombus Protrusion in Patients With Acute Coronary Syndrome: The CLI-OPCI ACS Substudy (Centro per la Lotta Contro L'Infarto-Optimization of Percutaneous Coronary Intervention in Acute Coronary Syndrome) Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease Histopathological validation of optical coherence tomography findings of the coronary arteries Characteristics of abnormal post-stent optical coherence tomography findings in hemodialysis patients Noninvasive Screening for Pulmonary Hypertension by Exercise Testing in Congenital Heart Disease Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study

Review ArticleVolume 75, Issue 21, June 2020

JOURNAL:JACC Article Link

Mechanistic Biomarkers Informative of Both Cancer and Cardiovascular Disease: JACC State-of-the-Art Review

V Narayan, EW Thompson, B Demissei et al. Keywords: biomarkers; cancer; cardio-oncology; cardiovascular disease

ABSTRACT

Cardiovascular disease (CVD) and cancer are leading causes of morbidity and mortality worldwide. Although conventionally managed as separate disease processes, recent research has lent insight into compelling commonalities between CVD and cancer, including shared mechanisms for disease development and progression. In this review, the authors discuss several pathophysiological processes common to both CVD and cancer, such as inflammation, resistance to cell death, cellular proliferation, neurohormonal stress, angiogenesis, and genomic instability, in an effort to understand common mechanisms of both disease states. In particular, the authors highlight key circulating and genomic biomarkers associated with each of these processes, as well as their associations with risk and prognosis in both cancer and CVD. The purpose of this state-of-the-art review is to further our understanding of the potential mechanisms underlying cancer and CVD by contextualizing pathways and biomarkers common to both diseases.