CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Reply: Will Pulmonary Artery Denervation Really Have a Place in the Armamentarium of the Pulmonary Hypertension Specialist? Optical Coherence Tomography–Defined Plaque Vulnerability in Relation to Functional Stenosis Severity and Microvascular Dysfunction Drug-Coated Balloons for Coronary Artery Disease: Third Report of the International DCB Consensus Group Prognostic Implication of Functional Incomplete Revascularization and Residual Functional SYNTAX Score in Patients With Coronary Artery Disease Physiology-Based Revascularization: A New Approach to Plan and Optimize Percutaneous Coronary Intervention: State-of-the-Art Review Management of pulmonary hypertension from left heart disease in candidates for orthotopic heart transplantation The Hybrid Approach to Chronic Total Occlusion Percutaneous Coronary Intervention: Update From the PROGRESS CTO Registry Clinical and angiographic outcomes of coronary dissection after paclitaxel-coated balloon angioplasty for small vessel coronary artery disease Multicenter Registry of Real-World Patients With Severely Calcified Coronary Lesions Undergoing Orbital Atherectomy: 1-Year Outcomes Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study

Original Research2020 Jun 1;9(6):E1678.

JOURNAL:J Clin Med. Article Link

Adjunctive Cilostazol to Dual Antiplatelet Therapy to Enhance Mobilization of Endothelial Progenitor Cell in Patients with Acute Myocardial Infarction: A Randomized, Placebo-Controlled EPISODE Trial

Y Park, JH Kim, TH Kim et al. Keywords: cilostazol; endothelial progenitor cell; MI; platelet.

ABSTRACT


BACKGROUND - Endothelial progenitor cells (EPCs) have the potential to protect against atherothrombotic event occurrences. There are no data to evaluate the impact of cilostazol on EPC levels in high-risk patients.


METHODS - We conducted a randomized, double-blind, placebo-controlled trial to assess the effect of adjunctive cilostazol on EPC mobilization and platelet reactivity in patients with acute myocardial infarction (AMI). Before discharge, patients undergoing percutaneous coronary intervention (PCI) were randomly assigned to receive cilostazol SR capsule (200-mg) a day (n = 30) or placebo (n = 30) on top of dual antiplatelet therapy (DAPT) with clopidogrel and aspirin. Before randomization (baseline) and at 30-day follow-up, circulating EPC levels were analyzed using flow cytometry and hemostatic measurements were evaluated by VerifyNow and thromboelastography assays. The primary endpoint was the relative change in EPC levels between baseline and 30-day.


RESULTS - At baseline, there were similar levels of EPC counts between treatments, whereas patients with cilostazol showed higher levels of EPC counts compared with placebo after 30 days. Cilostazol versus placebo treatment displayed significantly higher changes in EPC levels between baseline and follow-up (ΔCD133+/KDR+: difference 216%, 95% confidence interval (CI) 44~388%, p = 0.015; ΔCD34+/KDR+: difference 183%, 95% CI 25~342%, p = 0.024). At 30-day follow-up, platelet reactivity was lower in the cilostazol group compared with the placebo group (130 ± 45 versus 169 ± 62 P2Y12 Reaction Unit, p = 0.009). However, there were no significant correlations between the changes of EPC levels and platelet reactivity.


CONCLUSIONS - Adjunctive cilostazol on top of clopidogrel and aspirin versus DAPT alone is associated with increased EPC mobilization and decreased platelet reactivity in AMI patients, suggesting its pleiotropic effects against atherothrombotic events (NCT04407312).