CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

The Potential Use of the Index of Microcirculatory Resistance to Guide Stratification of Patients for Adjunctive Therapy in Acute Myocardial Infarction Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial The Prognostic Value of Exercise Echocardiography After Percutaneous Coronary Intervention Another Nail in the Coffin for Intra-Aortic Balloon Counterpulsion in Acute Myocardial Infarction With Cardiogenic Shock Linking Spontaneous Coronary Artery Dissection, Cervical Artery Dissection, and Fibromuscular Dysplasia: Heart, Brain, and Kidneys Long-term outcomes of rotational atherectomy of underexpanded stents. A single center experience The optimal duration of dual antiplatelet therapy after coronary stent implantation: to go too far is as bad as to fall short The Astronaut Cardiovascular Health and Risk Modification (Astro-CHARM) Coronary Calcium Atherosclerotic Cardiovascular Disease Risk Calculator Comparative Effectiveness of β-Blocker Use Beyond 3 Years After Myocardial Infarction and Long-Term Outcomes Among Elderly Patients Healed Culprit Plaques in Patients With Acute Coronary Syndromes

Original Research2020 Jun 1;9(6):E1678.

JOURNAL:J Clin Med. Article Link

Adjunctive Cilostazol to Dual Antiplatelet Therapy to Enhance Mobilization of Endothelial Progenitor Cell in Patients with Acute Myocardial Infarction: A Randomized, Placebo-Controlled EPISODE Trial

Y Park, JH Kim, TH Kim et al. Keywords: cilostazol; endothelial progenitor cell; MI; platelet.

ABSTRACT


BACKGROUND - Endothelial progenitor cells (EPCs) have the potential to protect against atherothrombotic event occurrences. There are no data to evaluate the impact of cilostazol on EPC levels in high-risk patients.


METHODS - We conducted a randomized, double-blind, placebo-controlled trial to assess the effect of adjunctive cilostazol on EPC mobilization and platelet reactivity in patients with acute myocardial infarction (AMI). Before discharge, patients undergoing percutaneous coronary intervention (PCI) were randomly assigned to receive cilostazol SR capsule (200-mg) a day (n = 30) or placebo (n = 30) on top of dual antiplatelet therapy (DAPT) with clopidogrel and aspirin. Before randomization (baseline) and at 30-day follow-up, circulating EPC levels were analyzed using flow cytometry and hemostatic measurements were evaluated by VerifyNow and thromboelastography assays. The primary endpoint was the relative change in EPC levels between baseline and 30-day.


RESULTS - At baseline, there were similar levels of EPC counts between treatments, whereas patients with cilostazol showed higher levels of EPC counts compared with placebo after 30 days. Cilostazol versus placebo treatment displayed significantly higher changes in EPC levels between baseline and follow-up (ΔCD133+/KDR+: difference 216%, 95% confidence interval (CI) 44~388%, p = 0.015; ΔCD34+/KDR+: difference 183%, 95% CI 25~342%, p = 0.024). At 30-day follow-up, platelet reactivity was lower in the cilostazol group compared with the placebo group (130 ± 45 versus 169 ± 62 P2Y12 Reaction Unit, p = 0.009). However, there were no significant correlations between the changes of EPC levels and platelet reactivity.


CONCLUSIONS - Adjunctive cilostazol on top of clopidogrel and aspirin versus DAPT alone is associated with increased EPC mobilization and decreased platelet reactivity in AMI patients, suggesting its pleiotropic effects against atherothrombotic events (NCT04407312).