CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

The Utility of Rapid Atrial Pacing Immediately Post-TAVR to Predict the Need for Pacemaker Implantation Transcatheter Aortic Valve Replacement vs Surgical Replacement in Patients With Pure Aortic Insufficiency Long-term effects of intensive glucose lowering on cardiovascular outcomes The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure The Role of the Pericardium in Heart Failure: Implications for Pathophysiology and Treatment Three vs twelve months of dual antiplatelet therapy after zotarolimus-eluting stents: the OPTIMIZE randomized trial Incidence, predictors, and outcomes associated with acute kidney injury in patients undergoing transcatheter aortic valve replacement: from the BRAVO-3 randomized trial Percutaneous Left Atrial Appendage Closure for Stroke Prophylaxis in Patients With Atrial Fibrillation: 2.3-Year Follow-up of the PROTECT AF (Watchman Left Atrial Appendage System for Embolic Protection in Patients With Atrial Fibrillation) Trial ACC/AHA Versus ESC Guidelines on Dual Antiplatelet Therapy JACC Guideline Comparison: JACC State-of-the-Art Review Subclinical and Device-Detected Atrial Fibrillation: Pondering the Knowledge Gap: A Scientific Statement From the American Heart Association

Original Research2020 Jul 13.

JOURNAL:Catheter Cardiovasc Interv. Article Link

Optical coherence tomography predictors of target vessel myocardial infarction after provisional stenting in patients with coronary bifurcation disease

XB Li, J Kan, SS Chen et al. Keywords: bifurcation lesions; lesion length; OCT; TVMI; vulnerable plaque

ABSTRACT

BACKGROUND - Provisional side branch (SB) stenting is correlated with target vessel myocardial infarction (TVMI) in patients with coronary bifurcation lesions. However, the mechanisms underlying this association remain unknown.


OBJECTIVES - To determine the correlation between SB lesion length with vulnerable plaques and TVMI using optical coherence tomography (OCT).


BACKGROUND - The correlation between SB lesion length with vulnerable plaques and TVMI is unknown.


METHODS - A total of 405 patients with 405 bifurcation lesions who underwent preprocedure OCT imaging of both the main vessel (MV) and the SB were enrolled. Patients were divided into long SB lesion (SB lesion length ≥10 mm) and short SB lesion (SB lesion length <10 mm) groups according to quantitative coronary analysis; they were also stratified by the presence of vulnerable plaques identified by OCT. The primary endpoint was the occurrence of TVMI after provisional stenting at 1-year follow-up.


RESULTS - In total, 178 (43.9%) patients had long SB lesions. Vulnerable plaques were predominantly localized in the MV and were more frequently in the long SB lesion group (42.7%) than in the short SB lesion group (24.2%, p < .001). At 1-year follow-up after provisional stenting, there were 31 (7.7%) TVMIs, with 21 (11.8%) in the long SB lesion group and 10 (4.4%) in the short SB lesion group (p = .009). Multivariate regression analysis showed that long SB lesion length (p = .011), absence of vulnerable plaques in the polygon of confluence (p = .001), and true coronary bifurcation lesions (p = .004) were the three independent factors of TVMI.


CONCLUSIONS - The presence of long SB lesion with MV vulnerable plaques predicts the increased risk of TVMI after provisional stenting in patients with true coronary bifurcation lesions. Further studies are warranted to identify the best stenting techniques for coronary bifurcation lesions with long SB lesions.