CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Coronary Microcirculation in Ischemic Heart Disease Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Optical Coherence Tomography and Computational Fluid Dynamics Study Sex-Based Outcomes in Patients With a High Bleeding Risk After Percutaneous Coronary Intervention and 1-Month Dual Antiplatelet Therapy: A Secondary Analysis of the LEADERS FREE Randomized Clinical Trial Left Main Revascularization in 2017: Coronary Artery Bypass Grafting or Percutaneous Coronary Intervention? Ticagrelor With or Without Aspirin in High-Risk Patients With Diabetes Mellitus Undergoing Percutaneous Coronary Intervention Safety and efficacy of the bioabsorbable polymer everolimus-eluting stent versus durable polymer drug-eluting stents in high-risk patients undergoing PCI: TWILIGHT-SYNERGY Percutaneous coronary intervention in left main coronary artery disease: the 13th consensus document from the European Bifurcation Club Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation A randomized clinical study comparing double kissing crush with provisional stenting for treatment of coronary bifurcation lesions: results from the DKCRUSH-II (Double Kissing Crush versus Provisional Stenting Technique for Treatment of Coronary Bifurcation Lesions) trial Revascularization of left main coronary artery

Review ArticleVolume 13, Issue 14, July 2020

JOURNAL:JACC: Cardiovascular Interventions Article Link

The Impact of Coronary Physiology on Contemporary Clinical Decision Making

N Kogame, M Ono, PW Serruys et al. Keywords: angiography-derived FFR; computed tomography–derived fractional flow reserve; coronary microvascular disease; FFR ;instantaneous wave-free ratio; nonhyperemic pressure ratio

ABSTRACT

Physiological assessment of coronary artery disease (CAD) has become one of the cornerstones of decision making for myocardial revascularization, with a large body of evidence supporting the benefits of using fractional flow reserve and other pressure-based indexes for functional assessment of coronary stenoses. Furthermore, physiology allows the identification of specific vascular dysfunction mechanisms in patients without obstructive CAD. Currently, more than 10 modalities of functional coronary assessment are available, although the overall adoption of these physiological tools, of either intracoronary or image-based nature, is still low. In this paper the authors review these modalities of functional coronary assessment according to their timing of use: outside the catheterization laboratory, in the catheterization laboratory prior to the percutaneous coronary intervention (PCI), and in the catheterization laboratory during or after PCI. The authors discuss how the information obtained can be used in setting the indication for PCI, in planning and guiding the procedure, and in documenting the final functional result of the intervention. The advantages and limitations of each modality in each setting are discussed. Furthermore, the key value of intracoronary physiology in diagnosing mechanisms of microcirculatory dysfunction, which account for the presence of ischemia in many patients without obstructive CAD, is revisited. On the basis of the opportunities generated by the multiplicity of diagnostic tools described, the authors propose an algorithmic approach to physiological coronary investigations in clinical practice, with the key aims of: 1) avoiding unneeded revascularization procedures; 2) improving procedural PCI and long-term outcomes in patients with obstructive CAD; and 3) diagnosing vascular dysfunction mechanisms that can be effectively treated in patients with NOCAD. The authors believe that such structured approach may also contribute to the wider adoption of available technologies for functional assessment of patients with CAD.