CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Successful Treatment of Unprotected Left Main Coronary Bifurcation Lesion Using Minimum Contrast Volume with Intravascular Ultrasound Guidance Astro-CHARM, the First 10-year ASCVD Risk Estimator Incorporating Coronary Calcium Improving the Use of Primary Prevention Implantable Cardioverter-Defibrillators Therapy With Validated Patient-Centric Risk Estimates Mortality Following Cardiovascular and Bleeding Events Occurring Beyond 1 Year After Coronary Stenting - A Secondary Analysis of the Dual Antiplatelet Therapy (DAPT) Study Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study Intravascular ultrasound guidance in drug-eluting stents implantation: a meta-analysis and trial sequential analysis of randomized controlled trials Relationship Between Infarct Size and Outcomes Following Primary PCI: Patient-Level Analysis From 10 Randomized Trials Intracoronary Optical Coherence Tomography 2018: Current Status and Future Directions Intravascular ultrasound-guided percutaneous coronary intervention in left main coronary bifurcation lesions: a review Prognostic impact of baseline glucose levels in acute myocardial infarction complicated by cardiogenic shock-a substudy of the IABP-SHOCK II-trial

Review ArticleVolume 13, Issue 14, July 2020

JOURNAL:JACC: Cardiovascular Interventions Article Link

The Impact of Coronary Physiology on Contemporary Clinical Decision Making

N Kogame, M Ono, PW Serruys et al. Keywords: angiography-derived FFR; computed tomography–derived fractional flow reserve; coronary microvascular disease; FFR ;instantaneous wave-free ratio; nonhyperemic pressure ratio

ABSTRACT

Physiological assessment of coronary artery disease (CAD) has become one of the cornerstones of decision making for myocardial revascularization, with a large body of evidence supporting the benefits of using fractional flow reserve and other pressure-based indexes for functional assessment of coronary stenoses. Furthermore, physiology allows the identification of specific vascular dysfunction mechanisms in patients without obstructive CAD. Currently, more than 10 modalities of functional coronary assessment are available, although the overall adoption of these physiological tools, of either intracoronary or image-based nature, is still low. In this paper the authors review these modalities of functional coronary assessment according to their timing of use: outside the catheterization laboratory, in the catheterization laboratory prior to the percutaneous coronary intervention (PCI), and in the catheterization laboratory during or after PCI. The authors discuss how the information obtained can be used in setting the indication for PCI, in planning and guiding the procedure, and in documenting the final functional result of the intervention. The advantages and limitations of each modality in each setting are discussed. Furthermore, the key value of intracoronary physiology in diagnosing mechanisms of microcirculatory dysfunction, which account for the presence of ischemia in many patients without obstructive CAD, is revisited. On the basis of the opportunities generated by the multiplicity of diagnostic tools described, the authors propose an algorithmic approach to physiological coronary investigations in clinical practice, with the key aims of: 1) avoiding unneeded revascularization procedures; 2) improving procedural PCI and long-term outcomes in patients with obstructive CAD; and 3) diagnosing vascular dysfunction mechanisms that can be effectively treated in patients with NOCAD. The authors believe that such structured approach may also contribute to the wider adoption of available technologies for functional assessment of patients with CAD.