CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial Clinical Efficacy and Safety of Alirocumab after Acute Coronary Syndrome According to Achieved Level of Low-Density Lipoprotein Cholesterol: A Propensity Score-Matched Analysis of the ODYSSEY OUTCOMES Trial The Potential Use of the Index of Microcirculatory Resistance to Guide Stratification of Patients for Adjunctive Therapy in Acute Myocardial Infarction Another Nail in the Coffin for Intra-Aortic Balloon Counterpulsion in Acute Myocardial Infarction With Cardiogenic Shock Relation of prior statin and anti-hypertensive use to severity of disease among patients hospitalized with COVID-19: Findings from the American Heart Association’s COVID-19 Cardiovascular Disease Registry Linking Spontaneous Coronary Artery Dissection, Cervical Artery Dissection, and Fibromuscular Dysplasia: Heart, Brain, and Kidneys Large-Bore Radial Access for Complex PCI: A Flash of COLOR With Some Shades of Grey Coronary Angiography after Cardiac Arrest without ST-Segment Elevation Long-term outcomes of rotational atherectomy of underexpanded stents. A single center experience Myocardial Infarction Risk Stratification With a Single Measurement of High-Sensitivity Troponin I

Original Research2020 Aug;13(8):e009047.

JOURNAL:Circ Cardiovasc Interv . Article Link

Third-Generation Balloon and Self-Expandable Valves for Aortic Stenosis in Large and Extra-Large Aortic Annuli From the TAVR-LARGE Registry

G Armijo, GHL Tang, N Kooistra et al. Keywords: aortic valve stenosis; cohort studies; hemodynamics; humans; transcatheter aortic valve replacement.

ABSTRACT

BACKGROUND - Currently, 2 third-generation transcatheter valves, 29-mm Sapien-3 and 34-mm Evolut-R (ER), are indicated for large sized aortic annuli. We analyzed short and 1-year performance of these valves in patients with large (area 575 mm2or perimeter 85 mm) and extra-large (683 mm2or 94.2 mm) aortic annuli undergoing transcatheter aortic valve replacement.

 

METHODS - A total of 833 patients across 12 centers with symptomatic aortic stenosis and large aortic annuli underwent transcatheter aortic valve replacement with 29-mm Sapien-3 (n=640) or 34-mm ER (n=193). Clinical, anatomic, and procedural characteristics were collected, and Valve Academic Research Consortium-2 outcomes were reported.

 

RESULTS - Median aortic annulus area and perimeter were 617 mm2(591657) and 89.1 mm (87.092.1), respectively (704 mm2[689743] and 96.0 mm [94.597.9] in the subgroup of 124 patients with extra-large annuli). Overall device success was 94.3% (Sapien-3, 95.8% and ER, 89.3%;P=0.001), with a higher rate of significant paravalvular leak (P=0.004), second valve implantation (P=0.013), and valve embolization (P=0.009) in the ER group. Thirty-day and 1-year mortality was 2.4% and 9.2%, respectively, without differences between groups. Valve hemodynamics were excellent (mean gradient, 8.8±3.6 mm Hg; 3.3% rate of moderate-severe paravalvular leak) in the extra-large annulus, without differences compared with the large annulus group.

 

CONCLUSIONS - In patients with large and extra-large aortic annuli, transcatheter aortic valve replacement using 29-mm Sapien-3 and 34-mm ER is safe and feasible. Observed differences in clinical outcomes and hemodynamic performance may guide valve choice in this cohort of patients undergoing transcatheter aortic valve replacement.