CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Atherosclerotic plaque with ultrasonic attenuation affects coronary reflow and infarct size in patients with acute coronary syndrome: an intravascular ultrasound study Temporal Trends in Transcatheter Aortic Valve Replacement in France: FRANCE 2 to FRANCE TAVI Impact of intravascular ultrasound on the long-term clinical outcomes in the treatment of coronary ostial lesions How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) When and how to use SGLT2 inhibitors in patients with HFrEF or chronic kidney disease Novel predictor of target vessel revascularization after coronary stent implantation: Intraluminal intensity of blood speckle on intravascular ultrasound Heart Failure Outcomes With Volume-Guided Management Bridging the Gap Between Epigenetic and Genetic in PAH Sex Differences in Heart Failure With Preserved Ejection Fraction Pathophysiology: A Detailed Invasive Hemodynamic and Echocardiographic Analysis The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction: the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) trial

Original Research2020 Oct 28;S1936-878X(20)30806-8.

JOURNAL:JACC Cardiovasc Imaging. Article Link

Prognostic Value of Computed Tomography-Derived Extracellular Volume in TAVR Patients With Low-Flow Low-Gradient Aortic Stenosis

B Tamarappoo, D Han, D Berman et al. Keywords: aortic stenosis; computed tomography; extracellular volume; low-flow low-gradient; TAVR

ABSTRACT

OBJECTIVES - The association between extracellular volume (ECV) measured by computed tomography angiography (CTA) and clinical outcomes was evaluated in low-flow low-gradient (LFLG) aortic stenosis (AS) patients undergoing transcatheter aortic valve replacement (TAVR).


BACKGROUND - Patients with LFLG AS comprise a high-risk group with respect to clinical outcomes. Although ECV, a marker of myocardial fibrosis, is traditionally measured with cardiac magnetic resonance, it can also be measured using cardiac CTA. The authors hypothesized that in LFLG AS, increased ECV may be associated with adverse clinical outcomes.


METHODS - In 150 LFLG patients with AS who underwent TAVR, ECV was quantified using pre-TAVR CTA. Echocardiographic and clinical information including all-cause death and heart failure rehospitalization (HFH) was obtained from electronic medical records. A Cox proportional hazards model was used to evaluate the association between ECV and death+HFH.


RESULTS - During a median follow-up of 13.9 months (range 0.07 to 28.9 months), there were 31 death+HFH events (21%). Patients who experienced death+HFH had a greater median Society of Thoracic Surgery score (9.9 vs. 4.7; p < 0.01), lower left ventricular ejection fraction (42.3 ± 20.2% vs. 52.7 ± 17.2%; p < 0.01), lower mean transvalvular gradient (24.9 ± 8.9 mm Hg vs. 28.1 ± 7.3 mm Hg; p = 0.04) and increased mean ECV (35.5 ± 9.6% vs. 29.9 ± 8.2%; p < 0.01) compared with patients who did not experience death+HFH. In a multivariable Cox proportional hazards model, increase in ECV was associated with increase in death+HFH, (hazard ratio per 1% increase: 1.04, 95% confidence interval: 1.01 to 1.09; p < 0.01).


CONCLUSIONS - In patients with LFLG AS, CTA measured increase in ECV is associated with increased risk of adverse clinical outcomes post-TAVR and may thus serve as a useful noninvasive marker for prognostication.