CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Systemic microvascular dysfunction in microvascular and vasospastic angina Sex- and Race-Related Differences in Characteristics and Outcomes of Hospitalizations for Heart Failure With Preserved Ejection Fraction Nocturnal thoracic volume overload and post-discharge outcomes in patients hospitalized for acute heart failure Prevalence and Outcomes of Concomitant Aortic Stenosis and Cardiac Amyloidosis Extreme Levels of Air Pollution Associated With Changes in Biomarkers of Atherosclerotic Plaque Vulnerability and Thrombogenicity in Healthy Adults Association of Statin Use With All-Cause and Cardiovascular Mortality in US Veterans 75 Years and Older Plasma Ionized Calcium and Risk of Cardiovascular Disease: 106 774 Individuals from the Copenhagen General Population Study 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Clinical Impact of Valvular Heart Disease in Elderly Patients Admitted for Acute Coronary Syndrome: Insights From the Elderly-ACS 2 Study Coronary Access After TAVR

Original Research2020 Oct 28;S1936-878X(20)30806-8.

JOURNAL:JACC Cardiovasc Imaging. Article Link

Prognostic Value of Computed Tomography-Derived Extracellular Volume in TAVR Patients With Low-Flow Low-Gradient Aortic Stenosis

B Tamarappoo, D Han, D Berman et al. Keywords: aortic stenosis; computed tomography; extracellular volume; low-flow low-gradient; TAVR

ABSTRACT

OBJECTIVES - The association between extracellular volume (ECV) measured by computed tomography angiography (CTA) and clinical outcomes was evaluated in low-flow low-gradient (LFLG) aortic stenosis (AS) patients undergoing transcatheter aortic valve replacement (TAVR).


BACKGROUND - Patients with LFLG AS comprise a high-risk group with respect to clinical outcomes. Although ECV, a marker of myocardial fibrosis, is traditionally measured with cardiac magnetic resonance, it can also be measured using cardiac CTA. The authors hypothesized that in LFLG AS, increased ECV may be associated with adverse clinical outcomes.


METHODS - In 150 LFLG patients with AS who underwent TAVR, ECV was quantified using pre-TAVR CTA. Echocardiographic and clinical information including all-cause death and heart failure rehospitalization (HFH) was obtained from electronic medical records. A Cox proportional hazards model was used to evaluate the association between ECV and death+HFH.


RESULTS - During a median follow-up of 13.9 months (range 0.07 to 28.9 months), there were 31 death+HFH events (21%). Patients who experienced death+HFH had a greater median Society of Thoracic Surgery score (9.9 vs. 4.7; p < 0.01), lower left ventricular ejection fraction (42.3 ± 20.2% vs. 52.7 ± 17.2%; p < 0.01), lower mean transvalvular gradient (24.9 ± 8.9 mm Hg vs. 28.1 ± 7.3 mm Hg; p = 0.04) and increased mean ECV (35.5 ± 9.6% vs. 29.9 ± 8.2%; p < 0.01) compared with patients who did not experience death+HFH. In a multivariable Cox proportional hazards model, increase in ECV was associated with increase in death+HFH, (hazard ratio per 1% increase: 1.04, 95% confidence interval: 1.01 to 1.09; p < 0.01).


CONCLUSIONS - In patients with LFLG AS, CTA measured increase in ECV is associated with increased risk of adverse clinical outcomes post-TAVR and may thus serve as a useful noninvasive marker for prognostication.