CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Impact of low tissue backscattering by optical coherence tomography on endothelial function after drug-eluting stent implantation Genetic analyses in a cohort of 191 pulmonary arterial hypertension patients Long-term outcomes after treatment of bare-metal stent restenosis with paclitaxel-coated balloon catheters or everolimus-eluting stents: 3-year follow-up of the TIS clinical study Coronary Microcirculation Downstream Non-Infarct-Related Arteries in the Subacute Phase of Myocardial Infarction: Implications for Physiology-Guided Revascularization Pulmonary Hypertension in Heart Failure: Pathophysiology, Pathobiology, and Emerging Clinical Perspectives Haemodynamic definitions and updated clinical classification of pulmonary hypertension Reply: Will Pulmonary Artery Denervation Really Have a Place in the Armamentarium of the Pulmonary Hypertension Specialist? Prognostic Implications of Plaque Characteristics and Stenosis Severity in Patients With Coronary Artery Disease Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention: Outcomes From the Pan-London PCI Cohort Coronary Flow Reserve in the Instantaneous Wave-Free Ratio/Fractional Flow Reserve Era: Too Valuable to Be Neglected

Original Research2020 Dec 4;CIRCINTERVENTIONS120009496.

JOURNAL:Circ Cardiovasc Interv. Article Link

Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study

BJ Forrestal, BC Case, C Yerasi et al. Keywords: coronary obstruction; heart valves; TAVR; valve-in-valve

Full Text PDF


BACKGROUND - The supra-annular leaflet position and tall stent frame of the self-expanding Evolut PRO or Evolut PRO+ transcatheter heart valves (THVs) may cause coronary occlusion during transcatheter aortic valve replacement (TAVR)-in-TAVR and present challenges for future coronary access. We sought to evaluate the risk of TAVR-in-TAVR with Evolut PRO or Evolut PRO+ THVs and the feasibility of future coronary access.


METHODS - The CoreValve Evolut PRO Prospective Registry (EPROMPT; NCT03423459) prospectively enrolled patients with symptomatic severe aortic stenosis to undergo TAVR using a commercially available latest generation self-expanding THV at 2 centers in the United States. Computed tomography was performed 30 days after TAVR, which we used to simulate TAVR-in-TAVR with a second Evolut PRO or Evolut PRO+ THV and evaluate for risk of coronary obstruction and feasibility of future coronary access.


RESULTS - Eighty-one patients enrolled with interpretable computed tomography are reported herein. Computed tomography simulation predicted sinus of Valsalva sequestration and resultant coronary obstruction during future TAVR-in-TAVR in up to 23% of patients. Computed tomography simulation predicted that the position of the pinned THV leaflets would hinder future coronary access in up to 78% of patients after TAVR-in-TAVR.


CONCLUSIONS - Further THV design improvements and leaflet modification strategies are needed to mitigate the risk of coronary obstruction during TAVR-in-TAVR with self-expanding THVs and to facilitate future coronary access.


REGISTRATION - URL: https://www.clinicaltrials.gov. Unique identifier: NCT03423459.