CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Drug-Coated Balloons for Coronary Artery Disease: Third Report of the International DCB Consensus Group Optical Coherence Tomography–Defined Plaque Vulnerability in Relation to Functional Stenosis Severity and Microvascular Dysfunction Physiology-Based Revascularization: A New Approach to Plan and Optimize Percutaneous Coronary Intervention: State-of-the-Art Review Prognostic Implication of Functional Incomplete Revascularization and Residual Functional SYNTAX Score in Patients With Coronary Artery Disease Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation: Outcomes at 2 years Management of pulmonary hypertension from left heart disease in candidates for orthotopic heart transplantation Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study Left ventricular remodelling and changes in functional measurements in patients undergoing transcatheter vs surgical aortic valve replacement: a head-to-head comparison Clinical and angiographic outcomes of coronary dissection after paclitaxel-coated balloon angioplasty for small vessel coronary artery disease Sex Differences in Instantaneous Wave-Free Ratio or Fractional Flow Reserve–Guided Revascularization Strategy

Original Research2020 Dec 4;CIRCINTERVENTIONS120009496.

JOURNAL:Circ Cardiovasc Interv. Article Link

Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study

BJ Forrestal, BC Case, C Yerasi et al. Keywords: coronary obstruction; heart valves; TAVR; valve-in-valve

Full Text PDF


BACKGROUND - The supra-annular leaflet position and tall stent frame of the self-expanding Evolut PRO or Evolut PRO+ transcatheter heart valves (THVs) may cause coronary occlusion during transcatheter aortic valve replacement (TAVR)-in-TAVR and present challenges for future coronary access. We sought to evaluate the risk of TAVR-in-TAVR with Evolut PRO or Evolut PRO+ THVs and the feasibility of future coronary access.


METHODS - The CoreValve Evolut PRO Prospective Registry (EPROMPT; NCT03423459) prospectively enrolled patients with symptomatic severe aortic stenosis to undergo TAVR using a commercially available latest generation self-expanding THV at 2 centers in the United States. Computed tomography was performed 30 days after TAVR, which we used to simulate TAVR-in-TAVR with a second Evolut PRO or Evolut PRO+ THV and evaluate for risk of coronary obstruction and feasibility of future coronary access.


RESULTS - Eighty-one patients enrolled with interpretable computed tomography are reported herein. Computed tomography simulation predicted sinus of Valsalva sequestration and resultant coronary obstruction during future TAVR-in-TAVR in up to 23% of patients. Computed tomography simulation predicted that the position of the pinned THV leaflets would hinder future coronary access in up to 78% of patients after TAVR-in-TAVR.


CONCLUSIONS - Further THV design improvements and leaflet modification strategies are needed to mitigate the risk of coronary obstruction during TAVR-in-TAVR with self-expanding THVs and to facilitate future coronary access.


REGISTRATION - URL: https://www.clinicaltrials.gov. Unique identifier: NCT03423459.