CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies Myofibroblast Phenotype and Reversibility of Fibrosis in Patients With End-Stage Heart Failure Attenuated plaque detected by intravascular ultrasound: clinical, angiographic, and morphologic features and post-percutaneous coronary intervention complications in patients with acute coronary syndromes Design and rationale for a randomised comparison of everolimus-eluting stents and coronary artery bypass graft surgery in selected patients with left main coronary artery disease: the EXCEL trial Adjunctive Cilostazol to Dual Antiplatelet Therapy to Enhance Mobilization of Endothelial Progenitor Cell in Patients with Acute Myocardial Infarction: A Randomized, Placebo-Controlled EPISODE Trial Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: a feasibility, safety, and outcome study Cardiac Resynchronization Therapy and Ventricular Tachyarrhythmia Burden Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis Positive recommendation for angiotensin receptor/neprilysin inhibitor: First medication approval for heart failure without "reduced ejection fraction" Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure

Original Research2020 Dec 4;CIRCINTERVENTIONS120009496.

JOURNAL:Circ Cardiovasc Interv. Article Link

Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study

BJ Forrestal, BC Case, C Yerasi et al. Keywords: coronary obstruction; heart valves; TAVR; valve-in-valve

Full Text PDF


BACKGROUND - The supra-annular leaflet position and tall stent frame of the self-expanding Evolut PRO or Evolut PRO+ transcatheter heart valves (THVs) may cause coronary occlusion during transcatheter aortic valve replacement (TAVR)-in-TAVR and present challenges for future coronary access. We sought to evaluate the risk of TAVR-in-TAVR with Evolut PRO or Evolut PRO+ THVs and the feasibility of future coronary access.


METHODS - The CoreValve Evolut PRO Prospective Registry (EPROMPT; NCT03423459) prospectively enrolled patients with symptomatic severe aortic stenosis to undergo TAVR using a commercially available latest generation self-expanding THV at 2 centers in the United States. Computed tomography was performed 30 days after TAVR, which we used to simulate TAVR-in-TAVR with a second Evolut PRO or Evolut PRO+ THV and evaluate for risk of coronary obstruction and feasibility of future coronary access.


RESULTS - Eighty-one patients enrolled with interpretable computed tomography are reported herein. Computed tomography simulation predicted sinus of Valsalva sequestration and resultant coronary obstruction during future TAVR-in-TAVR in up to 23% of patients. Computed tomography simulation predicted that the position of the pinned THV leaflets would hinder future coronary access in up to 78% of patients after TAVR-in-TAVR.


CONCLUSIONS - Further THV design improvements and leaflet modification strategies are needed to mitigate the risk of coronary obstruction during TAVR-in-TAVR with self-expanding THVs and to facilitate future coronary access.


REGISTRATION - URL: https://www.clinicaltrials.gov. Unique identifier: NCT03423459.