CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Systemic microvascular dysfunction in microvascular and vasospastic angina Haemodynamic-guided management of heart failure (GUIDE-HF): a randomised controlled trial Circadian-Regulated Cell Death in Cardiovascular Diseases CT Angiographic and Plaque Predictors of Functionally Significant Coronary Disease and Outcome Using Machine Learning Burden of Cardiovascular Diseases in China, 1990-2016: Findings From the 2016 Global Burden of Disease Study Aortic Valve Stenosis Treatment Disparities in the Underserved JACC Council Perspectives Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis From Detecting the Vulnerable Plaque to Managing the Vulnerable Patient rhACE2 Therapy Modifies Bleomycin-Induced Pulmonary Hypertension via Rescue of Vascular Remodeling Aspirin with or without Clopidogrel after Transcatheter Aortic-Valve Implantation

Original Research2020 Dec 4;CIRCINTERVENTIONS120009496.

JOURNAL:Circ Cardiovasc Interv. Article Link

Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study

BJ Forrestal, BC Case, C Yerasi et al. Keywords: coronary obstruction; heart valves; TAVR; valve-in-valve

Full Text PDF


BACKGROUND - The supra-annular leaflet position and tall stent frame of the self-expanding Evolut PRO or Evolut PRO+ transcatheter heart valves (THVs) may cause coronary occlusion during transcatheter aortic valve replacement (TAVR)-in-TAVR and present challenges for future coronary access. We sought to evaluate the risk of TAVR-in-TAVR with Evolut PRO or Evolut PRO+ THVs and the feasibility of future coronary access.


METHODS - The CoreValve Evolut PRO Prospective Registry (EPROMPT; NCT03423459) prospectively enrolled patients with symptomatic severe aortic stenosis to undergo TAVR using a commercially available latest generation self-expanding THV at 2 centers in the United States. Computed tomography was performed 30 days after TAVR, which we used to simulate TAVR-in-TAVR with a second Evolut PRO or Evolut PRO+ THV and evaluate for risk of coronary obstruction and feasibility of future coronary access.


RESULTS - Eighty-one patients enrolled with interpretable computed tomography are reported herein. Computed tomography simulation predicted sinus of Valsalva sequestration and resultant coronary obstruction during future TAVR-in-TAVR in up to 23% of patients. Computed tomography simulation predicted that the position of the pinned THV leaflets would hinder future coronary access in up to 78% of patients after TAVR-in-TAVR.


CONCLUSIONS - Further THV design improvements and leaflet modification strategies are needed to mitigate the risk of coronary obstruction during TAVR-in-TAVR with self-expanding THVs and to facilitate future coronary access.


REGISTRATION - URL: https://www.clinicaltrials.gov. Unique identifier: NCT03423459.