CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

TAVI Represents an Anti-Inflammatory Therapy via Reduction of Shear Stress Induced, Piezo-1-Mediated Monocyte Activation Treatment Effects of Pulmonary Artery Denervation for Pulmonary Arterial Hypertension Stratified by REVEAL Risk Score: Results from PADN-CFDA Trial Hemodynamic, Functional, and Clinical Responses to Pulmonary Artery Denervation in Patients With Pulmonary Arterial Hypertension of Different Causes 3-Year Outcomes After 2-Stent With Provisional Stenting for Complex Bifurcation Lesions Defined by DEFINITION Criteria Clinical Impact of Residual Leaks Following Left Atrial Appendage Occlusion: Insights From the NCDR LAAO Registry Half-Dose Direct Oral Anticoagulation Versus Standard Antithrombotic Therapy After Left Atrial Appendage Occlusion Haemodynamic definitions and updated clinical classification of pulmonary hypertension A Score to Assess Mortality After Percutaneous Mitral Valve Repair Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement Propensity-Matched 1-Year Outcomes Following Transcatheter Aortic Valve Replacement in Low-Risk Bicuspid and Tricuspid Patients

Original Research2020 Dec 16;e13473.

JOURNAL:Eur J Clin Invest . Article Link

Initial experience with percutaneous mitral valve repair in patients with cardiac amyloidosis

MJ Volz, ST Pleger, A Weber et al. Keywords: PMVR; amyloid cardiomyopathy; cardiac amyloidosis; mitral regurgitation

ABSTRACT


BACKGROUND - Percutaneous mitral valve repair (PMVR) is a therapeutic option for severe mitral regurgitation (MR) in patients with heart failure due to differential etiologies. However, only little is known about the safety and efficacy of this procedure in patients with amyloid cardiomyopathy.


METHODS - Five Patients with cardiac amyloidosis and moderate to severe or severe MR undergoing PMVR were analyzed retrospectively and compared to seven patients with cardiac amyloidosis and severe MR without intervention. Clinical and functional data, renal function and cardiac biomarkers as well as established risk scores for cardiac amyloidosis were assessed. Primary endpoint was the reduction in MR one year after PMVR. Secondary endpoints were safety, overall mortality after 12 months compared to the control group, as well as changes in clinical and functional parameters.


RESULTS - Amyloidosis risk assessment documented amyloid cardiomyopathy at an advanced stage in all patients. Procedural, technical and device success of PMVR were all 100% and residual MR remained mild to moderate at 12 months followup (p=0.038 vs. before PMVR). Differences in survival compared to the control (no PMVR) group pointed to a possible survival benefit in the PMVR group (p= 0.02).


CONCLUSION - PMVR is a feasible and safe procedure in patients with cardiac amyloidosis and might carry a possible survival benefit in this patient group.