CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Coronary Microcirculation in Ischemic Heart Disease Sex-Based Outcomes in Patients With a High Bleeding Risk After Percutaneous Coronary Intervention and 1-Month Dual Antiplatelet Therapy: A Secondary Analysis of the LEADERS FREE Randomized Clinical Trial Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Optical Coherence Tomography and Computational Fluid Dynamics Study Left Main Revascularization in 2017: Coronary Artery Bypass Grafting or Percutaneous Coronary Intervention? Ticagrelor With or Without Aspirin in High-Risk Patients With Diabetes Mellitus Undergoing Percutaneous Coronary Intervention Safety and efficacy of the bioabsorbable polymer everolimus-eluting stent versus durable polymer drug-eluting stents in high-risk patients undergoing PCI: TWILIGHT-SYNERGY Percutaneous coronary intervention in left main coronary artery disease: the 13th consensus document from the European Bifurcation Club Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation A randomized clinical study comparing double kissing crush with provisional stenting for treatment of coronary bifurcation lesions: results from the DKCRUSH-II (Double Kissing Crush versus Provisional Stenting Technique for Treatment of Coronary Bifurcation Lesions) trial Revascularization of left main coronary artery

Review Article2020 Dec 18;105383.

JOURNAL:Pharmacol Res. Article Link

Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review

F Yarmohammadi, R Rezaee, AW Haye et al. Keywords: apoptosis; autophagy; cardiac damage; doxorubicin; inflammation

ABSTRACT

Doxorubicin (DOX) is a chemotherapeutic agent with marked, dose-dependent cardiotoxicity that leads to tachycardia, atrial and ventricular arrhythmia, and irreversible heart failure. Induction of the endoplasmic reticulum (ER) which plays a major role in protein folding and calcium homeostasis was reported as a key contributor to cardiac complications of DOX. This article reviews several chemical compounds that have been shown to regulate DOX-induced inflammation, apoptosis, and autophagy via inhibition of ER stress signaling pathways, such as the IRE1α/ASK1/JNK, IRE1α/JNK/Beclin-1, and CHOP pathways.