CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation Will Pulmonary Artery Denervation Really Have a Place in the Armamentarium of the Pulmonary Hypertension Specialist? Genetic analyses in a cohort of 191 pulmonary arterial hypertension patients Pulmonary Hypertension in Heart Failure: Pathophysiology, Pathobiology, and Emerging Clinical Perspectives Haemodynamic definitions and updated clinical classification of pulmonary hypertension Atrial Fibrillation: JACC Council Perspectives Coronary Microcirculation Downstream Non-Infarct-Related Arteries in the Subacute Phase of Myocardial Infarction: Implications for Physiology-Guided Revascularization Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity

Review Article2020 Dec 18;105383.

JOURNAL:Pharmacol Res. Article Link

Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review

F Yarmohammadi, R Rezaee, AW Haye et al. Keywords: apoptosis; autophagy; cardiac damage; doxorubicin; inflammation

ABSTRACT

Doxorubicin (DOX) is a chemotherapeutic agent with marked, dose-dependent cardiotoxicity that leads to tachycardia, atrial and ventricular arrhythmia, and irreversible heart failure. Induction of the endoplasmic reticulum (ER) which plays a major role in protein folding and calcium homeostasis was reported as a key contributor to cardiac complications of DOX. This article reviews several chemical compounds that have been shown to regulate DOX-induced inflammation, apoptosis, and autophagy via inhibition of ER stress signaling pathways, such as the IRE1α/ASK1/JNK, IRE1α/JNK/Beclin-1, and CHOP pathways.