CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Reply: Will Pulmonary Artery Denervation Really Have a Place in the Armamentarium of the Pulmonary Hypertension Specialist? Optical Coherence Tomography–Defined Plaque Vulnerability in Relation to Functional Stenosis Severity and Microvascular Dysfunction Drug-Coated Balloons for Coronary Artery Disease: Third Report of the International DCB Consensus Group Prognostic Implication of Functional Incomplete Revascularization and Residual Functional SYNTAX Score in Patients With Coronary Artery Disease Management of pulmonary hypertension from left heart disease in candidates for orthotopic heart transplantation Physiology-Based Revascularization: A New Approach to Plan and Optimize Percutaneous Coronary Intervention: State-of-the-Art Review The Hybrid Approach to Chronic Total Occlusion Percutaneous Coronary Intervention: Update From the PROGRESS CTO Registry Multicenter Registry of Real-World Patients With Severely Calcified Coronary Lesions Undergoing Orbital Atherectomy: 1-Year Outcomes Clinical and angiographic outcomes of coronary dissection after paclitaxel-coated balloon angioplasty for small vessel coronary artery disease Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study

Review Article2020 Dec 18;105383.

JOURNAL:Pharmacol Res. Article Link

Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review

F Yarmohammadi, R Rezaee, AW Haye et al. Keywords: apoptosis; autophagy; cardiac damage; doxorubicin; inflammation

ABSTRACT

Doxorubicin (DOX) is a chemotherapeutic agent with marked, dose-dependent cardiotoxicity that leads to tachycardia, atrial and ventricular arrhythmia, and irreversible heart failure. Induction of the endoplasmic reticulum (ER) which plays a major role in protein folding and calcium homeostasis was reported as a key contributor to cardiac complications of DOX. This article reviews several chemical compounds that have been shown to regulate DOX-induced inflammation, apoptosis, and autophagy via inhibition of ER stress signaling pathways, such as the IRE1α/ASK1/JNK, IRE1α/JNK/Beclin-1, and CHOP pathways.