CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study) Percutaneous Coronary Intervention Readmissions Where Are the Solutions? Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series Translational Perspective on Epigenetics in Cardiovascular Disease Spontaneous Coronary Artery Dissection: JACC State-of-the-Art Review Coronary Artery Calcium Progression Is Associated With Coronary Plaque Volume Progression - Results From a Quantitative Semiautomated Coronary Artery Plaque Analysis Impact of Abnormal Coronary Reactivity on Long-Term Clinical Outcomes in Women New AHA/ACC/HRS Guidance on Sudden Cardiac Death Prevention 2017 AHA/ACC Clinical Performance and Quality Measures for Adults With ST-Elevation and Non–ST-Elevation Myocardial Infarction: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures Patient Characteristics Associated With Antianginal Medication Escalation and De-Escalation Following Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From the OPEN CTO Registry

Review Article2020 Dec 18;105383.

JOURNAL:Pharmacol Res. Article Link

Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review

F Yarmohammadi, R Rezaee, AW Haye et al. Keywords: apoptosis; autophagy; cardiac damage; doxorubicin; inflammation

ABSTRACT

Doxorubicin (DOX) is a chemotherapeutic agent with marked, dose-dependent cardiotoxicity that leads to tachycardia, atrial and ventricular arrhythmia, and irreversible heart failure. Induction of the endoplasmic reticulum (ER) which plays a major role in protein folding and calcium homeostasis was reported as a key contributor to cardiac complications of DOX. This article reviews several chemical compounds that have been shown to regulate DOX-induced inflammation, apoptosis, and autophagy via inhibition of ER stress signaling pathways, such as the IRE1α/ASK1/JNK, IRE1α/JNK/Beclin-1, and CHOP pathways.